--- title: Unit Circle TARGET DECK: Obsidian::STEM FILE TAGS: trigonometry tags: - trigonometry - unit-circle --- ## Overview On the [[cartesian|Cartesian coordinate system]], the **unit circle** is the [[circle]] with center at the origin and radius $1$. Suppose [[intervals|closed interval]] $[a, b]$ is mapped to an arc on the unit circle. Then the point on the unit circle corresponding to $a$ is called the **initial point** of the arc. The point corresponding to $b$ is called the **terminal point** of the arc. %%ANKI Basic On the Cartesian coordinate system, what is the unit circle? Back: The circle with center at the origin and radius $1$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic On the Cartesian coordinate system, where is the center of the unit circle located? Back: At $\langle 0, 0 \rangle$, i.e. the origin. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What is the radius of the unit circle? Back: $1$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What is the diameter of the unit circle? Back: $2$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What is the circumference of the unit circle? Back: $2\pi$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What is the area of the unit circle? Back: $\pi$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers does the point $\langle 0, 0 \rangle$ on the unit circle map to? Back: N/A. This point is not on the circle itself. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers does the point $\langle 1, 0 \rangle$ on the unit circle map to? Back: $2\pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which point on the unit circle does number $2\pi$ map to? Back: $\langle 1, 0 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which point on the unit circle does number $\frac{3\pi}{2}$ map to? Back: $\langle 0, -1 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers does the point $\langle 0, -1 \rangle$ on the unit circle map to? Back:$\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers does the point $\langle 0, 1 \rangle$ on the unit circle map to? Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which point on the unit circle does number $\frac{\pi}{2}$ map to? Back: $\langle 0, 1 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which point on the unit circle does number $\pi$ map to? Back: $\langle -1, 0 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers does the point $\langle -1, 0 \rangle$ on the unit circle map to? Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers correspond to the highlighted point on the unit circle? ![[unit-circle-1-0.png]] Back: $2 \pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers correspond to the highlighted point on the unit circle? ![[unit-circle-0-1.png]] Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers correspond to the highlighted point on the unit circle? ![[unit-circle-n1-0.png]] Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Which real numbers correspond to the highlighted point on the unit circle? ![[unit-circle-0-n1.png]] Back: $\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic *Why* does point $\langle 1, 0 \rangle$ on the unit circle coincide with real number $2\pi$? Back: Because the circumference of the unit circle is $2\pi$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic *Why* does point $\langle -1, 0 \rangle$ on the unit circle coincide with real number $\pi$? Back: Because half the circumference of the unit circle is $\pi$. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What is the "periodicity" of the unit circle? Back: $2 \pi$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What property of the unit circle does its periodicity correspond to? Back: Its circumference. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What arc describes the portion of a unit circle found in the first quadrant? Back: $\left(0, \frac{\pi}{2}\right)$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What arc describes the portion of a unit circle found in the third quadrant? Back: $\left(\pi, \frac{3\pi}{2}\right)$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What arc describes the portion of a unit circle found in the fourth quadrant? Back: $\left(\frac{3\pi}{2}, 2\pi\right)$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic What arc describes the portion of a unit circle found in the second quadrant? Back: $\left(\frac{\pi}{2}, \pi\right)$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Suppose interval $[a, b]$ is mapped to the unit circle. What is the point corresponding to $a$ called? Back: The initial point. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Suppose interval $[a, b]$ is mapped to the unit circle. What is the point corresponding to $b$ called? Back: The terminal point. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Map $\left[0, \frac{\pi}{2}\right]$ onto the unit circle. What is the initial point of this arc? Back: $\langle 1, 0 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Map $\left[0, \frac{\pi}{2}\right]$ onto the unit circle. What is the terminal point of this arc? Back: $\langle 0, 1 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Map $\left(0, \frac{\pi}{2}\right)$ onto the unit circle. What is the initial point of this arc? Back: N/A. There is no initial point. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Map $\left(0, \frac{\pi}{2}\right)$ onto the unit circle. What is the terminal point of this arc? Back: N/A. There is no terminal point. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Map $\left[-\pi, -\frac{\pi}{2}\right]$ onto the unit circle. What is the initial point of this arc? Back: $\langle -1, 0 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Basic Map $\left[-\pi, -\frac{\pi}{2}\right]$ onto the unit circle. What is the terminal point of this arc? Back: $\langle 0, -1 \rangle$ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Cloze Moving in the {positive} direction of the real number line corresponds to moving {counterclockwise} on the unit circle. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% %%ANKI Cloze Moving in the {negative} direction of the real number line corresponds to moving {clockwise} on the unit circle. Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024. END%% ## Bibliography * Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.