--- title: Hashing TARGET DECK: Obsidian::STEM FILE TAGS: hashing tags: - hashing --- ## Overview A **hash table** `T[0:m-1]` uses a **hash function** to map a universe of keys into slots of the hash table. It can be seen as a generalization of direct addressing (which has "hash function" $h(k) = k$). %%ANKI Basic With respect to hashing, what does the "universe" of keys refer to? Back: Every potential key that may be provided to the hash function. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What name is given to each position in a hash table? Back: A slot. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given a hash table with hash function $h$, the element at slot $k$ has what key? Back: A key $k'$ such that $h(k') = k$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given a hash table with hash function $h$, an element with key $k$ is placed in what slot? Back: $h(k)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given a hash table `T[0:m-1]`, what is the domain of a hash function? Back: The universe of keys. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given a hash table `T[0:m-1]`, what is the codomain of a hash function? Back: $\{0, \ldots, m - 1\}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does a hash value refer to? Back: The result produced by a hash function. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What distinguishes a slot from a hash value? Back: The former is a memory address. The latter is the result of a hash function. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What relationship exists between slots and hash values? Back: A slot is often referred to by a hash value. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Given hash function $h$, key $k$ {hashes} to slot $h(k)$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What combinatorial concept is used to prove the presence of hash table collisions? Back: The pigeonhole principle. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic When *must* there exist hash table collisions? Back: When the number of hashed keys is greater than the number of slots. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does a hash table collision refer to? Back: Two different keys hashing to the same slot. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic With respect to hash tables, what imagery is invoked by the term "hash"? Back: Random mixing and chopping. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Are hash tables or direct-address tables more general? Back: Hash tables. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is a direct-address table reinterpreted as a hash table? Back: It's a hash table with hash function $h(k) = k$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## Load Factor Consider hash table $T$ with $m$ slots that stores $n$ entries. Then the **load factor** $\alpha$ for $T$ is defined to be $n / m$, i.e. the average number of entries that map to the same slot. %%ANKI Basic The load factor of a hash table is a ratio of what two numbers? Back: The number of entries in the table to the number of slots stored in the table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze The load factor of a hash table {increases} as the number of slots {decrease}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze The load factor of a hash table {decreases} as the number of total entries {decrease}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze The load factor of a hash table {increases} as the number of total entries {increase}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze The load factor of a hash table {decreases} as the number of slots {increase}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $n / m$ denote the load factor of a hash table. What does $n$ represent? Back: The total number of entries in the table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $n / m$ denote the load factor of a hash table. What does $m$ represent? Back: The number of slots in the table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* is the load factor $\alpha$ of a hash table defined the way it is? Back: It represents the average number of entries stored at a slot. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% An **independent uniform hash function** is the ideal theoretical abstraction. For each possible input $k$ in universe $U$, an output $h(k)$ is produced randomly and independently chosen from range $\{0, 1, \ldots, m - 1\}$. Once a value $h(k)$ is chosen, each subsequent call to $h$ with the same input $k$ yields the same output $h(k)$. %%ANKI Basic What is considered an ideal (though theoretical) hash function? Back: An independent uniform hash function. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given independent uniform hash function $h$, what about $h$ is "independent"? Back: Each key $k$ has output $h(k)$ determined independently from other keys. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given independent uniform hash function $h$, what about $h$ is "uniform"? Back: Every output of $h$ is equally likely to be any of the values in its range. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic With respect to hashing, a random oracle refers to what kind of hash function? Back: An independent uniform hash function. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Where does "memory" come into play with independent uniform hash functions? Back: Once $h(k)$ is determined, subsequent calls to $h$ with $k$ always yield the same value. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is uniform hashing? Back: Hasing in which an input key is equally likely to hash into any slot. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is independent hashing? Back: The slot an element hashes to is independent of where other elements hash to. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In practice, hash functions are designed to handle keys of what two types? Back: A fixed-width nonnegative integer or a vector of them. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does Cormen et al. define a "good" hash function? Back: It satisfies (approximately) the assumption of independent uniform hashing. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## Static Hashing **Static hashing** refers to providing a single fixed hash function intended to work well on *any* data. Generally speaking, this should not be favored over random hashing. %%ANKI Basic What does static hashing refer to? Back: Providing a single hash function intended to work well on *any* data. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Cloze {Static} hashing provides a {single hash function} intended to work well on any data. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What does it mean for static hashing to be independent? Back: Where a key hashes to is independent of where other keys hash to. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What about independent static hashing is a bit of a misnomer? Back: N/A. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What does it mean for static hashing to be uniform? Back: Each key has an equal likelihood of hashing to any slot. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What about uniform static hashing is a bit of a misnomer? Back: Where keys hash to depend on the input keys' probability distribution. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic In static hashing, *why* is uniformity generally impossible? Back: Because we use a fixed hash function for *all* data. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Assuming $m$ slots, why is static hashing function $h(k) = \lfloor km \rfloor$ not generally "good"? Back: The probability distribution from which keys were drawn may not be uniform. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What property must an ideal static hashing function exhibit? Back: It must derive hash values independently of any patterns that may exist in the keys. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What randomization is available to static hashing? Back: The distribution of input keys. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% ### Division Method The **division method** for creating hash functions maps a key $k$ into one of $m$ slots by taking the remainder of $k$ divided by $m$. That is, $h(k) = k \bmod{m}$. %%ANKI Basic The division method is used to produce what? Back: A hash function. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What hyperparameter(s) does the division method require? Back: The number of slots in the hash table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Given $m$ slots, the division method produces what hash function? Back: $h(k) = k \bmod{m}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Let $h$ be a division method hash function. What does $h(10)$ evaluate to? Back: To $10 \bmod{m}$, where $m$ is the number of slots in the hash table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Consider hash function $h(k) = k \bmod{m}$. What does $m$ likely represent? Back: The number of slots in the hash table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Let $m$ be some number of slots. What $m$'s does the division method typically work best on? Back: A prime not too close to an exact power of $2$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Why does the division method prefer a prime number of slots? Back: To operate as independently as possible of the input keys. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Consider hash function $h(k) = k \bmod{m}$. What method was likely used to produce this? Back: The division method. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Is the division method an example of static or random hashing? Back: Static. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ### Multiplication Method The **multiplication method** for creating hash functions first multiples a key $k$ by a constant $0 < A < 1$ and extracts the fractional part of $kA$. Then it multiplies this value by $m$ and takes the floor of the result. That is, $h(k) = \lfloor m(kA \bmod{1}) \rfloor$. %%ANKI Basic The multiplication method is used to produce what? Back: A hash function. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What hyperparameter(s) does the multiplication method require? Back: Slot count $m$ and some constant $0 < A < 1$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Given $m$ slots and constant $A$, the multiplication method produces what hash function? Back: $h(k) = \lfloor m (kA \bmod{1}) \rfloor$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic What range does the constant $A$ found in the multiplication method take on? Back: $0 < A < 1$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Consider hash function $h(k) = \lfloor m (kA \bmod{1}) \rfloor$. What does $m$ likely represent? Back: The number of slots in the hash table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Consider hash function $h(k) = \lfloor m (kA \bmod{1}) \rfloor$. What does $A$ likely represent? Back: Some constant $0 < A < 1$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Consider constant $A$ used in the multiplication method. *Why* shouldn't $A = 0$? Back: Then the produced hash function is constant. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Consider constant $A$ used in the multiplication method. *Why* shouldn't $A = 1$? Back: Then the produced hash function is constant. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Consider hash function $h(k) = \lfloor m (kA \bmod{1}) \rfloor$. What method was likely used to produce this? Back: The multiplication method. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static END%% %%ANKI Basic Is the multiplication method an example of static or random hashing? Back: Static. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic For $x \in \mathbb{R}^+$, what does $x \bmod{1}$ represent? Back: The fractional part of $x$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic For $x \in \mathbb{R}^+$, what expression does $x \bmod{1}$ evaluate to? Back: $x - \lfloor x \rfloor$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic For $x \in \mathbb{Z}^+$, what expression does $x \bmod{1}$ evaluate to? Back: $0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## Random Hashing **Random hashing** refers to choosing a hash function randomly in a way that is independent of the keys being stored. %%ANKI Basic What does random hashing refer to? Back: Choosing a hash function randomly and independently of the keys being stored. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random END%% %%ANKI Basic What does random hashing avoid that static hashing doesn't? Back: Randomization guarantees no single input always evokes worst-case behavior. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random END%% ### Universal Hashing Let $\mathscr{H}$ be a finite family of hash functions that map a given universe $U$ of keys into range $\{0, 1, \ldots, m - 1\}$. Such a family is said to be **universal** if $$\forall x, y \in U, x \neq y \Rightarrow |\{h \in \mathscr{H} \mid h(x) = h(y)\}| \leq \frac{|\mathscr{H}|}{m}.$$ %%ANKI Basic Which of universal hashing or random hashing more general? Back: Random hashing. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic With respect to universal hashing, what mathematical object is property "universal" attributed to? Back: A finite set of hash functions. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic What does "family" refer to in the context of universal hashing? Back: A finite set of hash functions. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Consider a hash table with $m = 1$ slot. Which hash function families are universal? Back: Finite families of hash functions mapping to e.g. $\{0\}$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic A "universal family" refers to a finite set of what? Back: Hash functions. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Let $\mathscr{H}$ be a universal family and $h \in \mathscr{H}$. What is the domain of $h$? Back: The universe of keys. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Let $\mathscr{H}$ be a universal family and $h \in \mathscr{H}$. What is the codomain of $h$? Back: $\{0, 1, \ldots, m - 1\}$ (or similar), where $m$ refers to the number of hash table slots. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Consider universal family $\mathscr{H}$ and universe $U$. What does the following evaluate to? $$|\{h \in \mathscr{H} \mid h(x) = h(y)\}| \text{ for distinct } x, y \in U$$ Back: A value between $0$ and $|\mathscr{H}|$ inclusive. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Let $\mathscr{H} = \{h \mid U \rightarrow \{0, 1, \ldots, m - 1\}\}$ be universal. What first-order logic statement holds? Back: $$\forall x, y \in U, x \neq y \Rightarrow |\{h \in \mathscr{H} \mid h(x) = h(y)\}| \leq \frac{|\mathscr{H}|}{m}$$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Let $\mathscr{H} = \{h \mid U \rightarrow \{0, 1, \ldots, m - 1\}\}$ be universal. What does $m > |\mathscr{H}|$ imply? Back: For any distinct $x, y \in U$, $h(x) \neq h(y)$ for all $h \in \mathscr{H}$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Independent uniform hashing is equivalent to picking a function from what universal family? Back: $^U\{0, 1, \ldots, m\}$, i.e. the set of functions from $U$ to $\{0, 1, \ldots, m\}$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Consider universe $U$ and $\mathscr{H} = \{I_U\}$. Is $\mathscr{H}$ universal? Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Consider universe $U$ and $\mathscr{H} = \{I_U\}$. *Why* is $\mathscr{H}$ universal? Back: Because for any distinct $x, y \in U$, $I_U(x) \neq I_U(y)$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Consider universe $U$ and $\mathscr{H} = \{h\}$ where $h(x) = 0$. Is $\mathscr{H}$ universal? Back: Not necessarily. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Consider universe $U$ and $\mathscr{H} = \{h\}$ where $h(x) = 0$. *When* is $\mathscr{H}$ universal? Back: When there exists only one slot in the relevant hash table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Consider universe $U$ and $\mathscr{H} = \{h\}$ where $h(x) = 0$. *When* is $\mathscr{H}$ not universal? Back: When there exists more than one slot in the relevant hash table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Let $\mathscr{H} = \{h \mid U \rightarrow \{0, 1, \ldots, m - 1\}\}$ be universal. What number decreases as $m$ increases? Back: The number of permitted conflicts for each $h \in \mathscr{H}$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Let $\mathscr{H} = \{h \mid U \rightarrow \{0, 1, \ldots, m - 1\}\}$ be universal. What number increases as $|\mathscr{H}|$ increases? Back: The number of permitted conflicts for each $h \in \mathscr{H}$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic Is $\varnothing$ a universal family? Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% %%ANKI Basic How might we redefine "universal" to prevent $\varnothing \subseteq \{h \mid h \colon U \rightarrow \{0, 1, \ldots, m - 1\}$ being considered universal? Back: $$\forall x, y \in U, x \neq y \Rightarrow \frac{|\varnothing|}{|\varnothing|} \leq \frac{1}{m}$$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::random hashing::universal END%% ## Bibliography * Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). * “Universal Hashing,” in _Wikipedia_, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Universal_hashing](https://en.wikipedia.org/w/index.php?title=Universal_hashing&oldid=1219538176).