--- title: Axioms TARGET DECK: Obsidian::STEM FILE TAGS: set tags: - set --- ## Overview Enderton describes ten different axioms in total which serve as the foundation of our set theory. ## Extensionality If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$ %%ANKI Basic What does the extensionality axiom state? Back: If two sets have exactly the same members, then they are equal. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is the extensionality axiom expressed using first-order logic? Back: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic The following encodes which set theory axiom? $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$ Back: The extensionality axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How many sets exist with no members? Back: Exactly one. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Which set theory axiom proves uniqueness of $\varnothing$? Back: The extensionality axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ## Empty Set Axiom There exists a set having no members: $$\exists B, \forall x, x \not\in B$$ %%ANKI Basic What does the empty set axiom state? Back: There exists a set having no members. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is the empty set axiom expressed using first-order logic? Back: $$\exists B, \forall x, x \not\in B$$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic The following encodes which set theory axiom? $$\exists B, \forall x, x \not\in B$$ Back: The empty set axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Which set theory axiom proves existence of $\varnothing$? Back: The empty set axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What two properties ensures definition $\varnothing$ is well-defined? Back: The empty set exists and is unique. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ## Pairing Axiom For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$ %%ANKI Basic What does the pairing axiom state? Back: For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is the pairing axiom expressed using first-order logic? Back: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic The following encodes which set theory axiom? $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$ Back: The pairing axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Which set theory axiom proves existence of set $\{x, y\}$ where $x \neq y$? Back: The pairing axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Which set theory axiom proves existence of set $\{x\}$? Back: The pairing axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic For sets $u$ and $v$, what name is given to set $\{u, v\}$? Back: The pair set of $u$ and $v$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic In set theory, what does a singleton refer to? Back: A set with exactly one member. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What set theory axiom is used to prove existence of singletons? Back: The pairing axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ## Union Axiom ### Preliminary Form For any sets $a$ and $b$, there exists a set whose members are those sets belonging either to $a$ or to $b$ (or both): $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$ %%ANKI Basic What does the union axiom (preliminary form) state? Back: For any sets $a$ and $b$, there exists a set whose members are all in either $a$ or $b$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is the union axiom (preliminary form) expressed using first-order logic? Back: $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic The following encodes which set theory axiom? $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$ Back: The union axiom (preliminary form). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is the union of sets $a$ and $b$ denoted? Back: $a \cup b$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What two set theory axioms proves existence of e.g. $\{x_1, x_2, x_3\}$? Back: The pairing axiom and union axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ## Power Set Axiom For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$ %%ANKI Basic What does the power set axiom state? Back: For any set $a$, there exists a set whose members are exactly the subsets of $a$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is the power set axiom expressed using first-order logic? Back: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic The following encodes which set theory axiom? $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$ Back: The power set axiom. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is $x \subseteq a$ rewritten using first-order logic and $\in$? Back: $\forall t, t \in x \Rightarrow t \in a$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is the power set of set $a$ denoted? Back: $\mathscr{P}{a}$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ## Bibliography * Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).