--- title: Equivalence Transformation TARGET DECK: Obsidian::STEM FILE TAGS: formal-system::equiv-trans tags: - equiv-trans - logic - programming --- ## Overview **Equivalence-transformation** is a proof system used alongside classical truth-functional [[pred-logic|predicate logic]]. It is the foundation upon which [[pred-trans|predicate transformers]] are based. %%ANKI Basic Who is the author of "The Science of Programming"? Back: David Gries. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861286--> END%% %%ANKI Cloze Gries replaces logical operator {$\Leftrightarrow$} in favor of {$=$}. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861295--> END%% %%ANKI Basic What Lean theorem justifies Gries' choice of $=$ over $\Leftrightarrow$? Back: `propext` Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. Tags: lean <!--ID: 1706994861302--> END%% %%ANKI Basic What are the two calculi Gries describes equivalence-transformation with? Back: A formal system and a system of evaluation. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673342--> END%% A [[prop-logic|proposition]] is said to be a **tautology** if it evaluates to $T$ in every state it is well-defined in. We say propositions $E1$ and $E2$ are **equivalent** if $E1 = E2$ is a tautology. In this case, we say $E1 = E2$ is an **equivalence**. %%ANKI Basic What does it mean for a proposition to be a tautology? Back: That the proposition is true in every state it is well-defined in. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861323--> END%% %%ANKI Basic How is tautology $e$ written equivalently with a quantifier? Back: For free identifiers $i_1, \ldots, i_n$ in $e$, as $\forall (i_1, \ldots, i_n), e$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867032--> END%% %%ANKI Basic The term "equivalent" refers to a comparison between what two objects? Back: Expressions. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673345--> END%% %%ANKI Basic What does it mean for two propositions to be equivalent? Back: Given propositions $E1$ and $E2$, it means $E1 = E2$ is a tautology. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673347--> END%% %%ANKI Basic What is an equivalence? Back: Given propositions $E1$ and $E2$, tautology $E1 = E2$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673348--> END%% %%ANKI Basic How is $\Rightarrow$ written in terms of other logical operators? Back: $p \Rightarrow q$ is equivalent to $\neg p \lor q$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861358--> END%% %%ANKI Basic How is $\Leftrightarrow$/$=$ written in terms of other logical operators? Back: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861360--> END%% %%ANKI Basic What distinguishes an equality from an equivalence? Back: An equivalence is an equality that is also a tautology. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707316178709--> END%% ## Axioms ### Commutativity For propositions $E1$ and $E2$: * $(E1 \land E2) = (E2 \land E1)$ * $(E1 \lor E2) = (E2 \lor E1)$ * $(E1 = E2) = (E2 = E1)$ %%ANKI Basic Which of the basic logical operators do the commutative laws apply to? Back: $\land$, $\lor$, and $=$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673350--> END%% %%ANKI Basic What do the commutative laws allow us to do? Back: Reorder operands. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673351--> END%% %%ANKI Basic What is the commutative law of e.g. $\land$? Back: $E1 \land E2 = E2 \land E1$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673353--> END%% ### Associativity For propositions $E1$, $E2$, and $E3$: * $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$ * $E1 \lor (E2 \lor E3) = (E1 \lor E2) \lor E3$ %%ANKI Basic Which of the basic logical operators do the associative laws apply to? Back: $\land$ and $\lor$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673354--> END%% %%ANKI Basic What do the associative laws allow us to do? Back: Remove parentheses. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673355--> END%% %%ANKI Basic What is the associative law of e.g. $\land$? Back: $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673357--> END%% ### Distributivity For propositions $E1$, $E2$, and $E3$: * $E1 \lor (E2 \land E3) = (E1 \lor E2) \land (E1 \lor E3)$ * $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$ %%ANKI Basic Which of the basic logical operators do the distributive laws apply to? Back: $\land$ and $\lor$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673358--> END%% %%ANKI Basic What do the distributive laws allow us to do? Back: "Factor" propositions. Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673360--> END%% %%ANKI Basic What is the distributive law of e.g. $\land$ over $\lor$? Back: $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673361--> END%% ### De Morgan's For propositions $E1$ and $E2$: * $\neg (E1 \land E2) = \neg E1 \lor \neg E2$ * $\neg (E1 \lor E2) = \neg E1 \land \neg E2$ %%ANKI Basic Which of the basic logical operators do De Morgan's laws involve? Back: $\neg$, $\land$, and $\lor$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673363--> END%% %%ANKI Basic How is De Morgan's law (distributing $\land$) expressed as an equivalence? Back: $\neg (E1 \land E2) = \neg E1 \lor \neg E2$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673364--> END%% ### Law of Negation For any proposition $E1$, it follows that $\neg (\neg E1) = E1$. %%ANKI Basic How is the law of negation expressed as an equivalence? Back: $\neg (\neg E1) = E1$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673365--> END%% ### Law of Excluded Middle For any proposition $E1$, it follows that $E1 \lor \neg E1 = T$. %%ANKI Basic Which of the basic logical operators does the law of excluded middle involve? Back: $\lor$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673367--> END%% %%ANKI Basic How is the law of excluded middle expressed as an equivalence? Back: $E1 \lor \neg E1 = T$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673368--> END%% %%ANKI Basic "This sentence is false" questions which classical principle? Back: The law of excluded middle. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251779153--> END%% ### Law of Contradiction For any proposition $E1$, it follows that $E1 \land \neg E1 = F$. %%ANKI Basic Which of the basic logical operators does the law of contradiction involve? Back: $\land$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673370--> END%% %%ANKI Basic How is the law of contradiction expressed as an equivalence? Back: $E1 \land \neg E1 = F$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673371--> END%% %%ANKI Cloze The law of {1:excluded middle} is to {2:$\lor$} whereas the law of {2:contradiction} is to {1:$\land$}. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707251673373--> END%% %%ANKI Basic What does the principle of explosion state? Back: That any statement can be proven from a contradiction. Reference: “Principle of Explosion,” in _Wikipedia_, July 3, 2024, [https://en.wikipedia.org/w/index.php?title=Principle_of_explosion](https://en.wikipedia.org/w/index.php?title=Principle_of_explosion&oldid=1232334233). <!--ID: 1721354092779--> END%% %%ANKI Basic How is the principle of explosion stated in first-order logic? Back: $\forall P, F \Rightarrow P$ Reference: “Principle of Explosion,” in _Wikipedia_, July 3, 2024, [https://en.wikipedia.org/w/index.php?title=Principle_of_explosion](https://en.wikipedia.org/w/index.php?title=Principle_of_explosion&oldid=1232334233). <!--ID: 1721354092783--> END%% %%ANKI Basic What does the law of contradiction say? Back: For any proposition $P$, it holds that $\neg (P \land \neg P)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721354092786--> END%% %%ANKI Basic How does the principle of explosion relate to the law of contradiction? Back: If a contradiction could be proven, then anything can be proven (using the principle of explosion). Reference: “Principle of Explosion,” in _Wikipedia_, July 3, 2024, [https://en.wikipedia.org/w/index.php?title=Principle_of_explosion](https://en.wikipedia.org/w/index.php?title=Principle_of_explosion&oldid=1232334233). <!--ID: 1721354092789--> END%% %%ANKI Basic Suppose $P$ and $\neg P$. Show schematically how to use the principle of explosion to prove $Q$. Back: $$\begin{align*} P \\ \neg P \\ P \lor Q \\ \hline Q \end{align*}$$Reference: “Principle of Explosion,” in _Wikipedia_, July 3, 2024, [https://en.wikipedia.org/w/index.php?title=Principle_of_explosion](https://en.wikipedia.org/w/index.php?title=Principle_of_explosion&oldid=1232334233). <!--ID: 1721354092792--> END%% %%ANKI Cloze The law of {contradiction} and law of {excluded middle} create a dichotomy in "logical space". Reference: “Law of Noncontradiction,” in _Wikipedia_, June 14, 2024, [https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction](https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction&oldid=1229006759). <!--ID: 1721354092795--> END%% %%ANKI Basic Which property of partitions is analagous to the law of contradiction on "logical space"? Back: Disjointedness. Reference: “Law of Noncontradiction,” in _Wikipedia_, June 14, 2024, [https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction](https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction&oldid=1229006759). <!--ID: 1721354092798--> END%% %%ANKI Basic Which property of partitions is analagous to the law of excluded middle on "logical space"? Back: Exhaustiveness. Reference: “Law of Noncontradiction,” in _Wikipedia_, June 14, 2024, [https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction](https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction&oldid=1229006759). <!--ID: 1721354092801--> END%% %%ANKI Cloze The law of {1:contradiction} is to "{2:mutually exclusive}" whereas the law of {2:excluded middle} is "{1:jointly exhaustive}". Reference: “Law of Noncontradiction,” in _Wikipedia_, June 14, 2024, [https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction](https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction&oldid=1229006759). <!--ID: 1721354092805--> END%% %%ANKI Basic Which logical law proves equivalence of the law of contradiction and excluded middle? Back: De Morgan's law. Reference: “Law of Noncontradiction,” in _Wikipedia_, June 14, 2024, [https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction](https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction&oldid=1229006759). <!--ID: 1721355020261--> END%% ### Law of Implication For any propositions $E1$ and $E2$, it follows that $E1 \Rightarrow E2 = \neg E1 \lor E2$. ### Law of Equality For any propositions $E1$ and $E2$, it follows that $(E1 = E2) = (E1 \Rightarrow E2) \land (E2 \Rightarrow E1)$. ### Law of Or-Simplification For any propositions $E1$ and $E2$, it follows that: * $E1 \lor E1 = E1$ * $E1 \lor T = T$ * $E1 \lor F = E1$ * $E1 \lor (E1 \land E2) = E1$ ### Law of And-Simplification For any propositions $E1$ and $E2$, it follows that: * $E1 \land E1 = E1$ * $E1 \land T = E1$ * $E1 \land F = F$ * $E1 \land (E1 \lor E2) = E1$ ### Law of Identity For any proposition $E1$, $E1 = E1$. ## Inference Rules * Rule of Substitution * Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence. * Rule of Transitivity * Let $E1 = E2$ and $E2 = E3$ be equivalences. Then $E1 = E3$ is an equivalence. %%ANKI Basic What two inference rules make up the equivalence-transformation formal system? Back: Substitution and transitivity. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707253246450--> END%% %%ANKI Basic Which of the two inference rules that make up the equivalence-transformation formal system is redundant? Back: Transitivity. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707432641598--> END%% %%ANKI Basic What does the rule of substitution say in the system of evaluation? Back: Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707253246452--> END%% %%ANKI Basic How is the rule of substitution written as an inference rule (in standard form)? Back: $$ \begin{matrix} E1 = E2 \\ \hline P(E1) = P(E2) \end{matrix} $$ <!--ID: 1707253246454--> END%% %%ANKI Basic What does the rule of transitivity state in the system of evaluation? Back: Let $E1 = E2$ and $E2 = E3$. Then $E1 = E3$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707253246455--> END%% %%ANKI Basic How is the rule of transitivity written as an inference rule (in standard form)? Back: $$ \begin{matrix} E1 = E2, E2 = E3 \\ \hline E1 = E3 \end{matrix} $$ <!--ID: 1707253246457--> END%% %%ANKI Basic What is a "theorem" in the equivalence-transformation formal system? Back: An equivalence derived from the axioms and inference rules. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707316178712--> END%% %%ANKI Basic How is e.g. the Law of Implication proven in the system of evaluation? Back: With truth tables. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707316178714--> END%% %%ANKI Basic How is e.g. the Law of Implication proven in the formal system? Back: It isn't. It is an axiom. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707316178715--> END%% %%ANKI Cloze The system of evaluation and formal system are connected by the following biconditional: {$e$ is a tautology} iff {$e = T$ is a theorem}. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707316178717--> END%% %%ANKI Cloze The {1:system of evaluation} is to {2:"$e$ is a tautology"} whereas the {2:formal system} is to {1:"$e = T$ is a theorem"}. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707316276203--> END%% ## Selectors A **selector** denotes a finite sequence of subscript expressions, each enclosed in brackets. $\epsilon$ denotes the empty selector. For example, variable $x$ is equivalently denoted as $x \circ \epsilon$ whereas for array $b$, $b[i]$ is equivalently denoted as $b \circ [i]$. **Selector update** syntax allows specifying a new value with previous subscripted values overridden. For instance, $(b; i{:}e)$ denotes $b$ with $b[i]$ now referring to $e$. More formally, for any $j \in \mathop{domain}(b)$, $$(b; i{:}e)[j] = \begin{cases} i = j \rightarrow e \\ i \neq j \rightarrow b[j] \end{cases}$$ %%ANKI Basic Let $b$ be an array. What does $b.lower$ denote? Back: The lower subscript bound of the array. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130015--> END%% %%ANKI Basic Let $b$ be an array. What does $b.upper$ denote? Back: The upper subscript bound of the array. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130019--> END%% %%ANKI Basic Let $b$ be an array. How is $domain(b)$ defined in set-theoretic notation? Back: $\{i \mid b.lower \leq i \leq b.upper\}$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130022--> END%% %%ANKI Basic Let $b[0{:}2]$ be an array. What is $b.lower$? Back: $0$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130025--> END%% %%ANKI Basic Let $b[0{:}2]$ be an array. What is $b.upper$? Back: $2$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130028--> END%% %%ANKI Basic Execution of `b[i] := e` of array $b$ in state $s$ yields what new value of $b$? Back: $b = (b; i{:}s(e))$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130031--> END%% %%ANKI Basic Let $s$ be a state. What *is* $x$ in $(s; x{:}e)$? Back: An identifier found in $s$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130034--> END%% %%ANKI Basic Let $s$ be a state. What *is* $e$ in $(s; x{:}e)$? Back: An expression. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130037--> END%% %%ANKI Basic Let $s$ be a state. What is $e$'s type in $(s; x{:}e)$? Back: A type matching $x$'s declaration. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130041--> END%% %%ANKI Basic Let $b$ be an array. What *is* $x$ in $(b; x{:}e)$? Back: An expression that evaluates to a member of $domain(b)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130045--> END%% %%ANKI Basic Let $b$ be an array. What is $e$'s type in $(b; x{:}e)$? Back: A type matching $b$'s member declaration. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130050--> END%% %%ANKI Basic Let $b$ be an array. What case analysis does $(b; i{:}e)[j]$ evaluate to? Back: $$(b; i{:}e)[j] = \begin{cases} i = j \rightarrow e \\ i \neq j \rightarrow b[j] \end{cases}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130056--> END%% %%ANKI Basic Let $b$ be an array. How is $(((b; i{:}e_1); j{:}e_2); k{:}e_3)$ rewritten without nesting? Back: As $(b; i{:}e_1; j{:}e_2; k{:}e_3)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130062--> END%% %%ANKI Basic Let $b$ be an array. How is $(b; (i{:}e_1; (j{:}e_2; (k{:}e_3))))$ rewritten without nesting? Back: N/A. This is invalid syntax. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130067--> END%% %%ANKI Basic Let $b$ be an array. How is $(b; i{:}e_1; j{:}e_2; k{:}e_3)$ rewritten with nesting? Back: As $(((b; i{:}e_1); j{:}e_2); k{:}e_3)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130072--> END%% %%ANKI Basic Let $b$ be an array. What does $(b; i{:}2; i{:}3; i{:}4)[i]$ evaluate to? Back: $4$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130077--> END%% %%ANKI Basic Let $b$ be an array. How is $(b; 0{:}8; 2{:}9; 0{:}7)[1]$ simplified? Back: As $b[1]$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130081--> END%% %%ANKI Basic According to Gries, what is the traditional interpretation of an array? Back: As a collection of subscripted independent variables (with a common name). Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130086--> END%% %%ANKI Basic According to Gries, what is the new interpretation of an array? Back: As a function. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130090--> END%% %%ANKI Basic What propositional expression results from eliminating $(b; \ldots)$ notation from $(b; i{:}5)[j] = 5$? Back: $(i = j \land 5 = 5) \lor (i \neq j \land b[j] = 5)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130095--> END%% %%ANKI Basic What logical axiom is used when eliminating $(b; \ldots)$ notation from e.g. $(b; i{:}5)[j] = 5$? Back: The Law of the Excluded Middle. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130100--> END%% %%ANKI Cloze For state $s$ and array $b$, {$(s; x{:}s(x))$} is analagous to {$(b; i{:}b[i])$}. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130104--> END%% %%ANKI Basic What is the simplification of $(b; i{:}b[i]; j{:}b[j]; k{:}b[j])$? Back: $(b; k{:}b[j])$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1713793130108--> END%% %%ANKI Basic Given array $b$, what terminology does Gries use to describe $i{:}j$ in e.g. $b[i{:}j]$? Back: A section. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640885--> END%% %%ANKI Basic Given array $b$, how many elements are in section $b[i{:}j]$? Back: $j - i + 1$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714336859994--> END%% %%ANKI Basic Given array $b$ and fixed $j$, what is the largest possible value of $i$ in $b[i{:}j]$? Back: $j + 1$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714336859997--> END%% %%ANKI Basic Given array $b$, how many elements are in $b[j{+}1{:}j]$? Back: $0$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714336860000--> END%% %%ANKI Basic Given array $b$, what is $b[1{:}5] = x$ an abbreviation for? Back: $\forall i, 1 \leq i \leq 5 \Rightarrow b[i] = x$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714336860003--> END%% %%ANKI Basic Given array $b$, what is $b[1{:}k{-}1] < x < b[k{:}n{-}1]$ an abbreviation for? Back: $(\forall i, 1 \leq i < k \Rightarrow b[i] < x) \land (\forall i, k \leq i < n \Rightarrow x < b[i])$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714336860005--> END%% Generalizing further to all variable types $x$, $$\begin{align*} (x; \epsilon{:}e) & = e \\ (x; [i] {\circ} s{:}e)[j] & = \begin{cases} i \neq j \rightarrow x[j] \\ i = j \rightarrow (x[j]; s{:}e) \end{cases} \end{align*}$$ %%ANKI Basic What is a selector? Back: A finite sequence of subscript expressions. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640890--> END%% %%ANKI Basic Given valid expression $(x; [i]{\circ}s{:}e)$, what can be said about $i$? Back: $i$ is in the domain of $x$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640893--> END%% %%ANKI Basic What is the base case of selector update syntax? Back: $(x; \epsilon{:}e) = e$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640901--> END%% %%ANKI Basic How is the null selector usually denoted? Back: $\epsilon$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640904--> END%% %%ANKI Basic The null selector is the identity element of what operation? Back: Subscript sequence concatenation. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640907--> END%% %%ANKI Basic How is assignment $x := e$ rewritten with a selector? Back: $x \circ \epsilon := e$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640910--> END%% %%ANKI Basic How is $x \circ \epsilon := e$ rewritten using selector update syntax? Back: $x := (x; \epsilon{:}e)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640913--> END%% %%ANKI Basic How is command $x := (x; \epsilon{:}e)$ more compactly rewritten? Back: $x := e$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640917--> END%% %%ANKI Basic What two assignments (i.e. using `:=`) are used to prove $e = (x; \epsilon{:}e)$? Back: $x := e$ and $x \circ \epsilon := e$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640921--> END%% %%ANKI Basic How do assignments $x := e$ and $x \circ \epsilon := e$ prove $e = (x; \epsilon{:}e)$? Back: The assignments have the same effect and the latter can be written as $x := (x; \epsilon{:}e)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640926--> END%% %%ANKI Basic Let $b$ be an array. How is $b[i][j] := e$ rewritten using selector update syntax? Back: $b := (b; [i][j]{:}e)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640930--> END%% %%ANKI Basic Let $b$ be an array. What does $(b; \epsilon{:}g)$ evaluate to? Back: $g$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640934--> END%% %%ANKI Basic Let $b$ be an array and $i = j$. What does $(b; [i]{\circ}s{:}e)[j]$ evaluate to? Back: $(b[j]; s{:}e)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640938--> END%% %%ANKI Basic Let $b$ be an array and $i \neq j$. What does $(b; [i]{\circ}s{:}e)[j]$ evaluate to? Back: $b[j]$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640942--> END%% %%ANKI Basic Maintaining selector update syntax, how is $(c; [1]{:}3)[1]$ rewritten with $[1]$ commuted as leftward as possible? Back: $(c[1]; \epsilon{:}3)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1714395640953--> END%% %%ANKI Basic Consider selector update syntax. Is precedence left-to-right or right-to-left? Back: Right-to-left. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721497014090--> END%% %%ANKI Basic What does it mean for selector update syntax to have right-to-left precedence? Back: Rightmost selectors overwrite duplicate selectors. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721497014094--> END%% %%ANKI Basic How is $(b; s_1{:}e_1; s_2{:}e_2; s_1{:}e_3)$ simplified? Back: As $(b; s_2{:}e_2; s_1{:}e_3)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721497014098--> END%% ## Substitution **Textual substitution** refers to the replacement of a [[pred-logic#Identifiers|free]] identifier with an expression, introducing parentheses as necessary. This concept amounts to the [[#Equivalence Rules|Substitution Rule]] with different notation. %%ANKI Basic Textual substitution is derived from what equivalence rule? Back: The substitution rule. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304123--> END%% ### Simple If $x$ denotes a variable and $e$ an expression, substitution of $x$ by $e$ is denoted as $$\large{E_e^x}$$ %%ANKI Basic What term refers to $x$ in textual substitution $E_e^x$? Back: The reference. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707939006275--> END%% %%ANKI Basic What term refers to $e$ in textual substitution $E_e^x$? Back: The expression. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707939006283--> END%% %%ANKI Basic What term refers to both $x$ and $e$ together in textual substitution $E_e^x$? Back: The reference-expression pair. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707939006288--> END%% %%ANKI Basic What identifier is guaranteed to not occur freely in $E_e^x$? Back: N/A. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867036--> END%% %%ANKI Basic What identifier is guaranteed to not occur freely in $E_{s(e)}^x$? Back: $x$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867039--> END%% %%ANKI Basic *Why* does $x$ not occur freely in $E_{s(e)}^x$? Back: Because $s(e)$ evaluates to a constant proposition. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867042--> END%% %%ANKI Basic What is the role of $E$ in textual substitution $E_e^x$? Back: It is the expression in which free occurrences of $x$ are replaced. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1708347042194--> END%% %%ANKI Basic What is the role of $e$ in textual substitution $E_e^x$? Back: It is the expression that is evaluated and substituted into $E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1708347042199--> END%% %%ANKI Basic What is the role of $x$ in textual substitution $E_e^x$? Back: It is the identifier matching free occurrences in $E$ that are replaced. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1708347042203--> END%% %%ANKI Basic How is textual substitution $E_e^x$ interpreted as a function? Back: As $E(e)$, where $E$ is a function of $x$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304130--> END%% %%ANKI Basic Why does Gries prefer notation $E_e^x$ over e.g. $E(e)$? Back: The former indicates the identifier to replace. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304132--> END%% %%ANKI Basic What two scenarios ensure $E_e^x = E$ is an equivalence? Back: $x = e$ or no free occurrences of $x$ exist in $E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304133--> END%% %%ANKI Basic If $x \neq e$, why might $E_e^x = E$ be an equivalence despite $x$ existing in $E$? Back: The only occurrences of $x$ in $E$ may be bound. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304135--> END%% %%ANKI Basic What is required for $E_e^x$ to be valid? Back: Substitution must result in a syntactically valid expression. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304137--> END%% %%ANKI Basic What is the result of the following? $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))_z^x$$ Back: $$(z < y \land (\forall i : 0 \leq i < n : b[i] < y))$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304139--> END%% %%ANKI Basic What is the result of the following? $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))_z^y$$ Back: $$(x < z \land (\forall i : 0 \leq i < n : b[i] < z))$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304140--> END%% %%ANKI Basic What is the result of the following? $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))_z^i$$ Back: $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304141--> END%% ### General We can generalize textual substitution to operate on a vector of reference-expression pairs, where each reference corresponds to some identifier concatenated with a selector. Let $\bar{x} = \langle x_1, \ldots, x_n \rangle$ denote a vector of identifiers concatenated with selectors and $\bar{e} = \langle e_1, \ldots, e_n \rangle$ denote a vector of expressions. Then textual substitition of $\bar{x}$ with $\bar{e}$ in expression $E$ is denoted as $$\large{E_{\bar{e}}^{\bar{x}}}$$ Substitution is defined recursively as follows: 1. If each $x_i$ is a distinct identifier with a null selector, then $E_{\bar{e}}^{\bar{x}}$ is the simultaneous substitution of $\bar{x}$ with $\bar{e}$. 2. Adjacent reference-expression pairs may be permuted as long as they begin with different identifiers. That is, for all distinct $b$ and $c$, $$\Large{E_{\bar{e}, \,f, \,h, \,\bar{g}}^{\bar{x}, \,b, \,c, \,\bar{y}} = E_{\bar{x}, \,h, \,f, \,\bar{g}}^{\bar{x}, \,c, \,b, \,\bar{y}}}$$ 3. Multiple assignments to subparts of an object $b$ can be viewed as a single assignment to $b$. That is, provided $b$ does not begin any of the $x_i$, $$\Large{E_{e_1, \,\ldots, \,e_m, \,\bar{g}}^{b \,\circ\, s_1, \,\ldots, \,b \,\circ\, s_m, \,\bar{x}} = E_{(b; \,s_1{:}e_1; \,\cdots; \,s_m{:}e_m), \,\bar{g}}^{b, \,\bar{x}}}$$ Note that simultaneous substitution is different from sequential substitution. %%ANKI Basic Consider $E_{\bar{e}}^{\bar{x}}$. What is each $x_i$ in $\bar{x}$? Back: An identifier concatenated with a selector. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879842--> END%% %%ANKI Basic Consider $E_{\bar{e}}^{\bar{x}}$. What is each $e_i$ in $\bar{e}$? Back: An expression. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879845--> END%% %%ANKI Basic What is the base case in the evaluation of $E_{\bar{e}}^{\bar{x}}$? Back: If $\bar{x}$ are distinct identifiers with null selectors, direct simultaneous substitution. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879846--> END%% %%ANKI Basic Which of $E_{\bar{e}}^{\bar{x}}$'s reference-expression pairs may be moved? Back: Adjacent pairs with distinct identifiers. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879847--> END%% %%ANKI Basic When is $b_1 \circ s_1$ and $b_2 \circ s_2$ said to have distinct identifiers? Back: When $b_1 \neq b_2$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879848--> END%% %%ANKI Basic When is $b_1 \circ s_1$ and $b_2 \circ s_2$ said to have distinct selectors? Back: When $s_1 \neq s_2$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879850--> END%% %%ANKI Basic Suppose $x$ and $y$ are distinct. Is the following a tautology? $$\large{E_{e_1, e_2}^{x, y} = E_{e_2, e_1}^{y, x}}$$ Back: Yes. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879851--> END%% %%ANKI Basic When is the following a tautology? $$\large{E_{e_1, e_2}^{x, y} = E_{e_2, e_1}^{y, x}}$$ Back: When $x$ and $y$ refer to distinct identifiers. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879852--> END%% %%ANKI Basic Suppose $x = y$. When is the following a tautology? $$\large{E_{e_1, e_2}^{x, y} = E_{e_2, e_1}^{x, y}}$$ Back: When $e_1 = e_2$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879853--> END%% %%ANKI Basic Suppose $x$, $y$, $z$ are distinct. What next simplification step can be taken before substitution? $$\large{E_{e_1, e_2, e_3}^{x, y, z}}$$ Back: N/A. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879854--> END%% %%ANKI Basic Suppose $x \neq y$. What next simplification step can be taken before substitution? $$\large{E_{e_1, e_2, e_3}^{x, y, x}}$$ Back: $$\large{E_{e_1, e_3, e_2}^{x, x, y}}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879855--> END%% %%ANKI Basic Suppose $x \neq y$. What next simplification step can be taken before substitution? $$\large{E_{e_1, e_3, e_2}^{x, x, y}}$$ Back: $$\large{E_{(x; \,\epsilon{:}e_1; \,\epsilon{:}e_3), e_2}^{x, y}}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879856--> END%% %%ANKI Basic Suppose $x \neq y$. What next simplification step can be taken before substitution? $$\large{E_{(x; \,\epsilon{:}e_1; \,\epsilon{:}e_3), e_2}^{x, y}}$$ Back: $$\large{E_{e_3, e_2}^{x, y}}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879857--> END%% %%ANKI Basic Suppose $x \neq y$. *Why* isn't the following a tautology? $$\large{E_{e_1, e_2, e_3}^{x, y, x}} = E_{(x; \epsilon{:}e_1), e_2, e_3}^{x, y, x}$$ Back: N/A. It is. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879858--> END%% %%ANKI Basic Suppose $x \neq y$. *Why* isn't the following a tautology? $$\large{E_{e_1, e_2, e_3, e_4}^{x[1], x[2], y, x[3]}} = E_{(x; \,[1]{:}e_1; \,[2]{:}e_2), e_3, e_4}^{x, y, x[3]}$$ Back: N/A. It is. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879859--> END%% %%ANKI Basic Consider array $b$ and $i \in \mathop{domain}(b)$. What next simplification step can be taken before substitution? $$\large{E_{e}^{b[i]}}$$ Back: $$\large{E_{(b; [i]{:}e)}^{b}}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879860--> END%% %%ANKI Basic Consider identifier $x$, array $b$ and $i \in \mathop{domain}(b)$. What next simplification step can be taken before substitution? $$\large{E_{b[i]}^{x}}$$ Back: N/A. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1721495879861--> END%% ### Theorems * $(E_u^x)_v^x = E_{u_v^x}^x$ * The only possible free occurrences of $x$ that may appear after the first of the substitutions occur in $u$. %%ANKI Basic How do we simplify $(E_u^x)_v^x$? Back: As $E_{u_v^x}^x$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304143--> END%% %%ANKI Basic How is $E_{u_v^x}^x$ rewritten as sequential substitution? Back: As $(E_u^x)_v^x$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304145--> END%% %%ANKI Basic *Why* is $(E_u^x)_v^x = E_{u_v^x}^x$ an equivalence? Back: After the first substitution, the only possible free occurrences of $x$ are in $u$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304146--> END%% * If $y \not\in FV(E)$, then $(E_u^x)_v^y = E_{u_v^y}^x$. * $y$ may not be free in $E$ but substituting $x$ with $u$ can introduce a free occurrence. It doesn't matter if we perform the substitution first or second though. %%ANKI Basic In what two scenarios is $(E_u^x)_v^y = E_{u_v^y}^x$ always an equivalence? Back: $x = y$ or $y$ is not free in $E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304148--> END%% %%ANKI Basic If $x \neq y$, when is $(E_u^x)_v^y = E_{u_v^y}^x$? Back: When $y$ is not free in $E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304150--> END%% %%ANKI Basic Why does $y \not\in FV(E)$ ensure $(E_u^x)_v^y = E_{u_v^y}^x$ is an equivalence? Back: If it were, a $v$ would exist in the LHS that doesn't in the RHS. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707762304152--> END%% %%ANKI Basic How does Gries denote state $s$ with identifer $x$ set to value $v$? Back: $(s; x{:}v)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867049--> END%% %%ANKI Basic How is $(s; x{:}v)$ written instead using set-theoretical notation? Back: $(s - \{\langle x, s(x) \rangle\}) \cup \{\langle x, v \rangle\}$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867053--> END%% %%ANKI Basic Execution of `x := e` in state $s$ terminates in what new state? Back: $(s; x{:}s(e))$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867058--> END%% %%ANKI Basic Given state $s$, what statement does $(s; x{:}s(e))$ derive from? Back: `x := e` Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867062--> END%% %%ANKI Basic What missing value guarantees state $s$ satisfies equivalence $s = (s; x{:}\_)$? Back: $s(x)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867067--> END%% %%ANKI Basic Given state $s$, why is it that $s = (s; x{:}s(x))$? Back: Evaluating $x$ in state $s$ yields $s(x)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867072--> END%% * $s(E_e^x) = s(E_{s(e)}^x)$ * Substituting $x$ with $e$ and then evaluating is the same as substituting $x$ with the evaluation of $e$. %%ANKI Basic How can we simplify $s(E_{s(e)}^x)$? Back: As $s(E_e^x)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867076--> END%% %%ANKI Basic Given state $s$, what equivalence relates $E_e^x$ with $E_{s(e)}^x$? Back: $s(E_e^x) = s(E_{s(e)}^x)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707937867080--> END%% * Let $s$ be a state and $s' = (s; x{:}s(e))$. Then $s'(E) = s(E_e^x)$. %%ANKI Cloze Let $s$ be a state and $s' = (${$s; x{:}s(e)$}$)$. Then $s'(${$E$}$) = s(${$E_e^x$}$)$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707938187973--> END%% %%ANKI Basic If $s' = (s; x{:}s(e))$, then $s'(E) = s(E_e^x)$. Why do we not say $s' = (s; x{:}e)$ instead? Back: The value of a state's identifier must always be a constant proposition. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1708693353856--> END%% %%ANKI Basic How do you define $s'$ such that $s(E_e^x) = s'(E)$? Back: $s' = (s; x{:}s(e))$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707939006292--> END%% %%ANKI Basic Given defined value $v \neq s(x)$, when is $s(E) = (s; x{:}v)(E)$? Back: When $x$ is not free in $E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707939315519--> END%% * Given identifiers $\bar{x}$ and fresh identifiers $\bar{u}$, $(E_{\bar{u}}^{\bar{x}})_{\bar{x}}^{\bar{u}} = E$. %%ANKI Basic When is $(E_{\bar{u}}^{\bar{x}})_{\bar{x}}^{\bar{u}} = E$ guaranteed to be an equivalence? Back: When $\bar{x}$ and $\bar{u}$ refer to distinct identifiers (concatenated with selectors). Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1707939006297--> END%% ## States A **state** is a function that maps identifiers to $T$ or $F$. A proposition can be equivalently seen as a representation of the set of states in which it is true. %%ANKI Basic What is a state? Back: A function mapping identifiers to values. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861314--> END%% %%ANKI Basic Is $(b \land c)$ well-defined in $\{\langle b, T \rangle, \langle c, F \rangle\}$? Back: Yes. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861318--> END%% %%ANKI Basic Is $(b \lor d)$ well-defined in $\{\langle b, T \rangle, \langle c, F \rangle\}$? Back: No. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861320--> END%% %%ANKI Basic A proposition is well-defined with respect to what? Back: A state to evaluate against. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861316--> END%% %%ANKI Basic What DNF proposition represents states $\{(b, T), (c, T)\}$ and $\{(b, F), (c, F)\}$? Back: $(b \land c) \lor (\neg b \land \neg c)$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861337--> END%% %%ANKI Basic What set of states does proposition $a \land b$ represent? Back: $\{\{\langle a, T \rangle, \langle b, T \rangle\}\}$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861339--> END%% %%ANKI Basic What set of states does proposition $a \lor b$ represent? Back: $\{\{\langle a, T \rangle, \langle b, T \rangle\}, \{\langle a, T \rangle, \langle b, F \rangle\}, \{\langle a, F \rangle, \langle b, T \rangle\}\}$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715895996324--> END%% %%ANKI Basic What is sloppy about phrase "the states in $b \lor \neg c$"? Back: $b \lor \neg c$ is not a set but a representation of a set (of states). Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861341--> END%% %%ANKI Basic What is the weakest proposition? Back: $T$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861348--> END%% %%ANKI Basic What set of states does $T$ represent? Back: The set of all states. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861350--> END%% %%ANKI Basic What is the strongest proposition? Back: $F$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861352--> END%% %%ANKI Basic What set of states does $F$ represent? Back: The set of no states. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861354--> END%% %%ANKI Basic What does a proposition *represent*? Back: The set of states in which it is true. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861335--> END%% %%ANKI Basic When is $p$ stronger than $q$? Back: When $p \Rightarrow q$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861343--> END%% %%ANKI Basic If $p \Rightarrow q$, which of $p$ or $q$ is considered stronger? Back: $p$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715631869202--> END%% %%ANKI Basic When is $p$ weaker than $q$? Back: When $q \Rightarrow p$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861346--> END%% %%ANKI Basic If $p \Rightarrow q$, which of $p$ or $q$ is considered weaker? Back: $q$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715631869207--> END%% %%ANKI Basic Why is $b \land c$ stronger than $b \lor c$? Back: The former represents a subset of the states the latter represents. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1706994861356--> END%% %%ANKI Basic Given sets $a$ and $b$, $a = b$ is equivalent to the conjunction of what two expressions? Back: $a \subseteq b$ and $b \subseteq a$. Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715969047071--> END%% %%ANKI Cloze {$a \Rightarrow b$} is to propositional logic as {$a \subseteq b$} is to sets. Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715969047073--> END%% %%ANKI Cloze {$a \Leftrightarrow b$} is to propositional logic as {$a = b$} is to sets. Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715969047074--> END%% %%ANKI Basic Is $(i \geq 0)$ well-defined in $\{(i, -10)\}$? Back: Yes. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715898219881--> END%% %%ANKI Basic Is $(i \geq 0)$ well-defined in $\{(j, -10)\}$? Back: No. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715898219890--> END%% %%ANKI Basic What predicate represents states $\{(i, 0), (i, 2), (i, 4), \ldots\}$? Back: $i \geq 0$ is even. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715898219895--> END%% %%ANKI Basic What is sloppy about phrase "the states in $i + j = 0$"? Back: $i + j = 0$ is not a set but a representation of a set (of states). Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. <!--ID: 1715898219903--> END%% ## Bibliography * Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d. * Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.