--- title: Heaps TARGET DECK: Obsidian::STEM FILE TAGS: data_structure::heap tags: - algorithm - data_structure - heap --- ## Overview The **binary heap** data structure is an array object that can be viewed as a [[trees#Positional Trees|complete binary tree]]. The primary function used to maintain the max-heap property is `MAX_HEAPIFY_DOWN`. This function assumes the left and right- subtrees at a given node are max heaps but that the current node may be smaller than its children. An analagous function and assumptions exist for `MIN_HEAPIFY_DOWN`. ```c inline int left_child(int i) { return (i << 1) + 1; } inline int right_child(int i) { return (i << 1) + 2; } void max_heapify_down(int n, int H[static n], int i) { while (true) { int lc = left_child(i); int rc = right_child(i); int next = i; if (lc < n && H[next] < H[lc]) { next = lc; } if (rc < n && H[next] < H[rc]) { next = rc; } if (next == i) { return; } swap(H, i, next); i = next; } } void build_max_heap(int n, int H[static n]) { for (int i = n / 2 - 1; i >= 0; --i) { max_heapify_down(n, H, i); } } ``` %%ANKI Cloze A binary heap is an {array} that can be viewed as a {binary tree}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379014--> END%% %%ANKI Basic Is the following a valid binary heap? ![[perfect-tree.png]] Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379021--> END%% %%ANKI Basic Is the following a valid binary heap? ![[complete-tree.png]] Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379024--> END%% %%ANKI Basic Is the following a valid binary heap? ![[non-complete-tree.png]] Back: No. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379030--> END%% %%ANKI Basic Why can't the following be a binary heap? ![[non-complete-tree.png]] Back: A heap is equivalently viewed as a *complete* binary tree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379034--> END%% %%ANKI Basic What two sizes are associated with binary heaps? Back: The size of the heap and the capacity of the underlying array. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379038--> END%% %%ANKI Basic What are the two kinds of binary heaps? Back: Max-heaps and min-heaps. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379042--> END%% %%ANKI Basic What is the max-heap property? Back: Every parent node is greater than or equal to its children in value. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379046--> END%% %%ANKI Basic Where is the largest element of a max-heap? Back: At the root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379052--> END%% %%ANKI Basic Where is the smallest element of a max-heap? Back: At the leaves. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379059--> END%% %%ANKI Basic What is the min-heap property? Back: Every parent node is less than or equal to its children in value. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379072--> END%% %%ANKI Basic Where is the smallest element of a min-heap? Back: At the root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379077--> END%% %%ANKI Basic Where is the largest element of a min-heap? Back: At the leaves. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379083--> END%% %%ANKI Basic How is the following binary heap viewed as an array? ![[max-heap-tree.png]] Back: ![[max-heap-array.png]] Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356379065--> END%% %%ANKI Basic How is the following binary heap instead viewed as a binary tree? ![[max-heap-array.png]] Back: ![[max-heap-tree.png]] Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356442370--> END%% %%ANKI Basic What kind of binary heap is the following? ![[max-heap-array.png]] Back: A max-heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714356546616--> END%% %%ANKI Basic What preconditions must hold before invoking `MAX_HEAPIFY_DOWN` on a node? Back: The node's left and right subtrees must be max-heaps. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155389--> END%% %%ANKI Basic When is `MAX_HEAPIFY_DOWN` a no-op? Back: When the current node is already larger than both its children. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155419--> END%% %%ANKI Basic If not a no-op, which child should `MAX_HEAPIFY_DOWN` swap its current value with? Back: The larger of its two children. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155425--> END%% %%ANKI Basic Given a heap of height $h$, *why* is `MAX_HEAPIFY_DOWN`'s worst case runtime $O(h)$? Back: Each invocation may violate the max-heap property of a child node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155432--> END%% %%ANKI Basic What is the runtime of `MAX_HEAPIFY_DOWN`? Back: $O(h)$ where $h$ is the height of the heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425256--> END%% %%ANKI Basic What is the result of calling `MAX_HEAPIFY_DOWN` on the highlighted node? ![[max-heapify-1.png]] Back: ![[max-heapify-2.png]] Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155438--> END%% %%ANKI Basic What is the runtime of `MIN_HEAPIFY_DOWN`? Back: $O(h)$ where $h$ is the height of the heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425286--> END%% %%ANKI Basic What preconditions must hold before invoking `MIN_HEAPIFY_DOWN` on a node? Back: The node's left and right subtrees must be min-heaps. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155443--> END%% %%ANKI Basic When is `MIN_HEAPIFY_DOWN` a no-op? Back: When the current node is already smaller than both its children. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155448--> END%% %%ANKI Basic If not a no-op, which child should `MIN_HEAPIFY_DOWN` swap its current value with? Back: The smaller of its two children. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155453--> END%% %%ANKI Basic Given a heap of height $h$, *why* is `MIN_HEAPIFY_DOWN`'s worst case runtime $O(h)$? Back: Each invocation may violate the min-heap property of a child node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155459--> END%% %%ANKI Basic What does the "heapify" operation of a heap refer to? Back: Repeatedly swapping a node's value with a child until the heap property is achieved. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714399155469--> END%% %%ANKI Basic How many internal nodes does a binary heap of size $n$ have? Back: $\lfloor n / 2 \rfloor$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425292--> END%% %%ANKI Basic How many internal nodes precede the first external node of a binary heap of size $n$? Back: $\lfloor n / 2 \rfloor$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425296--> END%% %%ANKI Basic How is the height of a binary heap defined? Back: The height of the heap's root when viewed as a complete binary tree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425300--> END%% %%ANKI Basic What is the input of `MAX_HEAPIFY_DOWN`? Back: The index of a node in the target heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425304--> END%% %%ANKI Basic What is the input of `BUILD_MAX_HEAP`? Back: An array. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425309--> END%% %%ANKI Basic What is the runtime of `BUILD_MAX_HEAP` on an array of $n$ elements? Back: $O(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425314--> END%% %%ANKI Basic How is the `BUILD_MAX_HEAP` function usually implemented? Back: As calling heapify on each internal node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425320--> END%% %%ANKI Basic Which node does `BUILD_MAX_HEAP` start iterating on? Back: The last internal node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425326--> END%% %%ANKI Basic Why does `BUILD_MAX_HEAP` "ignore" the external nodes of a heap? Back: Because they are already max-heaps of size $1$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425331--> END%% %%ANKI Basic Given heap `H[0:n-1]`, what is `BUILD_MAX_HEAP`'s loop invariant? Back: Each node in `H[i+1:n-1]` is the root of a max-heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425336--> END%% %%ANKI Basic What is initialization of `BUILD_MAX_HEAP`'s loop invariant? Back: Every external node is the root of a max-heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425340--> END%% %%ANKI Basic What is maintenance of `BUILD_MAX_HEAP`'s loop invariant? Back: Calling `MAX_HEAPIFY_DOWN` maintains the max-heap property of the current node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425344--> END%% %%ANKI Basic In pseudocode, how is `BUILD_MAX_HEAP` implemented? Back: ```c void BUILD_MAX_HEAP(int n, int H[static n]) { for (int i = (n / 2) - 1; i >= 0; --i) { MAX_HEAPIFY_DOWN(i, H); } } ``` Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425348--> END%% %%ANKI Basic What is the input of `BUILD_MIN_HEAP`? Back: An array. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425351--> END%% %%ANKI Basic What is the runtime of `BUILD_MIN_HEAP` on an array of $n$ elements? Back: $O(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425355--> END%% %%ANKI Basic How is the `BUILD_MIN_HEAP` function usually implemented? Back: As calling heapify on each internal node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425359--> END%% %%ANKI Basic Which node does `BUILD_MIN_HEAP` start iterating on? Back: The last internal node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425363--> END%% %%ANKI Basic Why does `BUILD_MIN_HEAP` "ignore" the external nodes of a heap? Back: Because they are already min-heaps of size $1$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425367--> END%% %%ANKI Basic Given heap `H[0:n-1]`, what is `BUILD_MIN_HEAP`'s loop invariant? Back: Each node in `H[i+1:n-1]` is the root of a min-heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425372--> END%% %%ANKI Basic What is initialization of `BUILD_MIN_HEAP`'s loop invariant? Back: Every external node is the root of a min-heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425376--> END%% %%ANKI Basic What is maintenance of `BUILD_MIN_HEAP`'s loop invariant? Back: Calling `MIN_HEAPIFY_DOWN` maintains the min-heap property of the current node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425381--> END%% %%ANKI Basic In pseudocode, how is `BUILD_MIN_HEAP` implemented? Back: ```c void BUILD_MIN_HEAP(int n, int H[static n]) { for (int i = (n / 2) - 1; i >= 0; --i) { MIN_HEAPIFY_DOWN(i, H); } } ``` Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714403425386--> END%% %%ANKI Basic `BUILD_MIN_HEAP` can sort arrays of what sizes? Back: $\leq 2$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). <!--ID: 1714410566848--> END%% ## Bibliography * Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).