--- title: Bounds TARGET DECK: Obsidian::STEM FILE TAGS: calculus::bounds tags: - calculus --- ## Overview Suppose $S$ is a nonempty set of real numbers and suppose there are numbers $L$ and $U$ such that $L \leq x \leq U$ for all $x \in S$. Then $S$ is said to be **bounded below** by $L$ and **bounded above** by $U$. The number $L$ is said to be a **lower bound** for $S$; the number $U$ is said to be an **upper bound** for $S$. %%ANKI Basic Let $\varnothing \subset S \subseteq \mathbb{R}$. What does it mean for $S$ to be bounded below by $B$? Back: For all $x \in S$, $B \leq x$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What does it mean for $\varnothing \subseteq \mathbb{R}$ to be bounded above by $B$? Back: N/A. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Suppose $S \subseteq \mathbb{R}$ is bounded below by $B$. What property does set $S$ exhibit? Back: $S$ is nonempty. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Suppose $S \subseteq \mathbb{R}$ is unbounded above. What property does set $S$ exhibit? Back: Indeterminate. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Is the set of positive real numbers bounded below? Back: Yes. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $\varnothing \subset S \subseteq \mathbb{R}$. What does it mean for $S$ to be bounded above by $B$? Back: For all $x \in S$, $x \leq B$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Is the set of positive real numbers bounded above? Back: No. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What are the upper bounds of interval $[0, 1] \subseteq \mathbb{R}$? Back: All real numbers $x \geq 1$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What are the upper bounds of interval $(0, 1) \subseteq \mathbb{R}$? Back: All real numbers $x \geq 1$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What are the lower bounds of interval $[0, 1] \subseteq \mathbb{R}$? Back: All real numbers $x \leq 0$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What are the lower bounds of interval $(0, 1) \subseteq \mathbb{R}$? Back: All real numbers $x \leq 0$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% If $L \in S$, then $L$ is the **minimum element** of $S$ (denoted $L = \mathop{\text{min}} S$). Likewise, if $U \in S$, then $U$ is the **maximum element** of $S$ (denoted $U = \mathop{\text{max}}S$). A set with no lower bound is said to be **unbounded below**. A set with no upper bound is said to be **unbounded above**. %%ANKI Basic What is a maximum element of set $\varnothing \subset S \subseteq \mathbb{R}$? Back: A member of $S$ that is also an upper bound. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the maximum element of interval $[0, 1] \subseteq \mathbb{R}$? Back: $1$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the maximum element of interval $(0, 1) \subseteq \mathbb{R}$? Back: N/A. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is a minimum element of set $\varnothing \subset S \subseteq \mathbb{R}$? Back: A member of $S$ that is also a lower bound. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the minimum element of interval $(0, 1) \subseteq \mathbb{R}$? Back: N/A. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the minimum element of interval $[0, 1] \subseteq \mathbb{R}$? Back: $0$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How is a maximum element of $\varnothing \subset S \subseteq \mathbb{R}$ denoted? Back: As $\mathop{\text{max}} S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How is a minimum element of $\varnothing \subset S \subseteq \mathbb{R}$ denoted? Back: As $\mathop{\text{min}} S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% ## Least Upper Bounds A number $B$ is called a **least upper bound** (or **supremum**) of a nonempty set $S$ if $B$ is an upper bound for $S$ and no number less than $B$ is an upper bound for $S$. This is denoted as $B = \mathop{\text{lub}}S$ or $B = \mathop{\text{sup}} S$. %%ANKI Basic Let $\varnothing \subset S \subseteq \mathbb{R}$. What is a least upper bound of $S$? Back: An upper bound $B$ for $S$ such that no number less than $B$ is also an upper bound for $S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is an alternative term for a least upper bound of $S$? Back: A supremum of $S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How is a least upper bound for $S$ denoted? Back: As $\mathop{\text{lub}} S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How is a supremum for $S$ denoted? Back: As $\mathop{\text{sup}} S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What distinguishes a supremum from a least upper bound? Back: N/A. They are synonyms of one another. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What distinguishes a supremum from a maximum? Back: A supremum is not necessarily a member of the reference set. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the least upper bound of interval $[0, 1] \subseteq \mathbb{R}$? Back: $1$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the supremum of interval $(0, 1) \subseteq \mathbb{R}$? Back: $1$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How many upper bounds can a nonempty subset of $\mathbb{R}$ have? Back: $0$ or more. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How many supremums can a nonempty subset of $\mathbb{R}$ have? Back: $0$ or $1$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Is a maximum of a nonempty subset $S$ of $\mathbb{R}$ a supremum of $S$? Back: Yes. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Is a least upper bound of a nonempty subset $S$ of $\mathbb{R}$ a maximum of $S$? Back: Not necessarily. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S \subseteq \mathbb{R}$ have a supremum. If $h > 0$, *why* does there exist an $x \in S$ such that $x > \mathop{\text{sup}} S - h$? Back: Otherwise $\mathop{\text{sup}}S - h$ is an upper bound less than $\mathop{\text{sup}}S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S \subseteq \mathbb{R}$ have a supremum. If $h > 0$, *why* does there exist an $x \in S$ such that $x < \mathop{\text{sup}} S - h$? Back: N/A. This is not necessarily the case. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S \subseteq \mathbb{R}$ have an infimum. If $h > 0$, *why* does there exist an $x \in S$ such that $x > \mathop{\text{inf}} S + h$? Back: N/A. This is not necessarily the case. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S \subseteq \mathbb{R}$ have an infimum. If $h > 0$, *why* does there exist an $x \in S$ such that $x < \mathop{\text{inf}} S + h$? Back: Otherwise $\mathop{\text{inf}}S + h$ is a lower bound greater than $\mathop{\text{inf}}S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $A, B \subseteq \mathbb{R}$ have supremums. What set $C$ satisfies $\mathop{\text{sup}}C = \mathop{\text{sup}}A + \mathop{\text{sup}}B$? Back: $C = \{a + b \mid a \in A, b \in B\}$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $A, B \subseteq \mathbb{R}$. When is $\mathop{\text{sup}} \,\{a + b \mid a \in A, b \in B\}$ defined? Back: When $A$ and $B$ both have supremums. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $A, B \subseteq \mathbb{R}$. When is $\mathop{\text{inf}} \,\{a + b \mid a \in A, b \in B\}$ defined? Back: When $A$ and $B$ both have infimums. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $A, B \subseteq \mathbb{R}$ have infimums. What set $C$ satisfies $\mathop{\text{inf}}C = \mathop{\text{inf}}A + \mathop{\text{inf}}B$? Back: $C = \{a + b \mid a \in A, b \in B\}$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $S$ have a supremum? Back: Yes. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $T$ have a supremum? Back: Indeterminate. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $S$ have an infimum? Back: Indeterminate. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $T$ have an infimum? Back: Yes. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. How does $\mathop{\text{sup}} S$ compare to $\mathop{\text{inf}} T$? Back: $\mathop{\text{sup}}S \leq \mathop{\text{inf}}T$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% ### Completeness Axiom Every nonempty set $S$ of real numbers which is bounded above has a supremum; that is, there is a real number $B$ such that $B = \mathop{\text{sup}} S$. %%ANKI Basic What does the completeness axiom of real numbers state? Back: Every nonempty set of real numbers bounded above has a supremum. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Consider $\varnothing \subseteq \mathbb{R}$. Why doesn't the completeness axiom of real numbers apply? Back: $\varnothing$ is not a nonempty set. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Consider $(0, 1) \subseteq \mathbb{R}$. Why doesn't the completeness axiom of real numbers apply? Back: N/A. It does. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Consider $\mathbb{R}^+$. Why doesn't the completeness axiom apply? Back: $\mathbb{R}^+$ is not bounded above. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Consider $(-\infty, 0)$. Why doesn't the completeness axiom apply? Back: N/A. It does. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What arbitrary decision was made when formulating the completeness axiom of real numbers? Back: Whether to use supremums or infimums. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% ## Greatest Lower Bounds A number $B$ is called a **greatest lower bound** (or **infimum**) of a nonempty set $S$ if $B$ is a lower bound for $S$ and no number greater than $B$ is a lower bound for $S$. This is denoted as $B = \mathop{\text{glb}} S$ or $B = \mathop{\text{inf}} S$. %%ANKI Basic Let $\varnothing \subset S \subseteq \mathbb{R}$. What is a greatest lower bound of $S$? Back: A lower bound $B$ for $S$ such that no number greater than $B$ is also a lower bound for $S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is an alternative term for a greatest lower bound of $S$? Back: An infimum of $S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How is a greatest lower bound for $S$ denoted? Back: As $\mathop{\text{glb}} S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How is an infimum for $S$ denoted? Back: As $\mathop{\text{inf}} S$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What distinguishes a greatest lower bound from an infimum? Back: N/A. They are synonyms of one another. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What distinguishes an infimum from a minimum? Back: An infimum is not necessarily a member of the reference set. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the infimum of interval $[0, 1] \subseteq \mathbb{R}$? Back: $0$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic What is the greatest lower bound of interval $(0, 1) \subseteq \mathbb{R}$? Back: $0$ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How many lower bounds can a nonempty subset of $\mathbb{R}$ have? Back: $0$ or more. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic How many greatest lower bounds can a nonempty subset of $\mathbb{R}$ have? Back: $0$ or $1$. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Is an infimum of a nonempty subset $S$ of $\mathbb{R}$ a minimum of $S$? Back: Not necessarily. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% %%ANKI Basic Is a minimum of a nonempty subset $S$ of $\mathbb{R}$ a greatest lower bound of $S$? Back: Yes. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). END%% ## Bibliography * Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).