Notes on combinatory logic.
parent
3187a91194
commit
ff41225190
|
@ -613,7 +613,7 @@
|
|||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||
"_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3",
|
||||
"lambda-calculus/alpha-conversion.md": "a68f3cc1565fb26335218986808a1190",
|
||||
"lambda-calculus/index.md": "1e2d544f08f1564c4d3aa874d5e09745",
|
||||
"lambda-calculus/index.md": "14bf297d4314414723c11a11211b35b5",
|
||||
"x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656",
|
||||
"x86-64/instructions/logical.md": "a15c7da43cb97badef8ba4f8aadf9cbb",
|
||||
"x86-64/instructions/arithmetic.md": "e2c4c9caa51e089e313d6c9d3c3c0a12",
|
||||
|
@ -1070,7 +1070,10 @@
|
|||
"_journal/2024-12-26.md": "022aeaf68d46fd39b23aca9c577f3f41",
|
||||
"_journal/2024-12/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
||||
"_journal/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
|
||||
"_journal/2024-12/2024-12-26.md": "59e59cad1ae568adbe8e27e98d36c59c"
|
||||
"_journal/2024-12/2024-12-26.md": "59e59cad1ae568adbe8e27e98d36c59c",
|
||||
"combinators/index.md": "37ba794ba9a5ab84eb7452ed0a31aeec",
|
||||
"_journal/2024-12-28.md": "7692126f76a32b785744adcbc76a58cb",
|
||||
"_journal/2024-12/2024-12-27.md": "abc4a39a50305f3558181189eefb2058"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -2,8 +2,10 @@
|
|||
title: "2024-12-28"
|
||||
---
|
||||
|
||||
- [ ] Anki Flashcards
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Beginning notes on [[combinators/index|combinatory logic]].
|
|
@ -0,0 +1,422 @@
|
|||
---
|
||||
title: Combinators
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: combinator
|
||||
tags:
|
||||
- combinator
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Assume that there is given an infinite sequence of expressions called **variables** and a finite or infinite sequence of expressions called **atomic constants**, different from the variables. Included in the atomic constants are some [[#Basic Combinators|basic combinators]]. The set of expressions called $CL$-terms is defined inductively as follows:
|
||||
|
||||
* all variables and atomic constants are $CL$-terms;
|
||||
* if $X$ and $Y$ are $CL$-terms, then so is $(XY)$.
|
||||
|
||||
An **atom** is a variable or atomic constant. A **non-redex constant** is any atomic constant other than the basic combinators. A **non-redex atom** is a variable or non-redex constant. A **closed term** is a term containing no variables. A **combinator** is a closed term containing no atomic constants other than the basic combinators.
|
||||
|
||||
If the sequence of atomic constants is empty (besides the basic combinators), the system is called **pure**. Otherwise it is called **applied**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Who is usually attributed the creation of combinatory logic system?
|
||||
Back: Moses Schönfinkel.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657635-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many variables exist in a combinatory logic system?
|
||||
Back: An infinite number.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657636-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many atomic constants exist in a combinatory logic system?
|
||||
Back: Zero or more.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657637-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes variables and atomic constants in a combinatory logic system?
|
||||
Back: The latter is meant to refer to constants outside the formal system.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657638-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two classes of expressions does an "atom" potentially refer to in a combinatory logic system?
|
||||
Back: Variables and atomic constants.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657639-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What general term refers to both variables and atomic constants in a combinatory logic system?
|
||||
Back: Atoms.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657640-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why are variables and atomic constants called "atoms" in a combinatory logic system?
|
||||
Back: They are not composed of smaller $CL$-terms.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657641-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When is a combinatory logic system considered pure?
|
||||
Back: When there exist no atomic constants in the system (besides the basic combinators).
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657642-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When is a combinatory logic system considered applied?
|
||||
Back: When there exists at least one atomic constant in the system (besides the basic combinators).
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657643-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A combinatory logic system is either {pure} or {applied}.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657644-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What term refers to the base case of the $CL$-term definition?
|
||||
Back: The atoms.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657645-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What expression refers to the inductive cases of the $CL$-term definition?
|
||||
Back: For $CL$-terms $X$ and $Y$, $(XY)$ is a $CL$-term.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657646-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider $CL$-term $(S0)$. Is our combinatory logic system pure or applied?
|
||||
Back: Applied.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657647-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider $CL$-term $(SS)$. Is our combinatory logic system pure or applied?
|
||||
Back: Indeterminate.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657648-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What atomic constants are permitted in a pure combinatory logic system?
|
||||
Back: Just the basic combinators.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657649-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What variables are permitted in a pure combinatory logic system?
|
||||
Back: Any.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657650-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What atomic constants are permitted in an applied combinatory logic system?
|
||||
Back: Any.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657651-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What variables are permitted in an applied combinatory logic system?
|
||||
Back: Any.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657652-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What atoms are permitted in a pure combinatory logic system?
|
||||
Back: All variables and the basic combinators.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657653-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What atoms are permitted in an applied combinatory logic system?
|
||||
Back: Any.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657654-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the non-redex constants in a combinatory logic system?
|
||||
Back: Any atomic constant other than the basic combinators.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657655-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the redex constants in a combinatory logic system?
|
||||
Back: The basic combinators.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657656-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the non-redex atoms in a combinatory logic system?
|
||||
Back: Any variable or non-redex constant.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657657-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the redex atoms in a combinatory logic system?
|
||||
Back: The basic combinators.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657658-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes non-redex constants from non-redex atoms?
|
||||
Back: The latter also refer to variables.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657659-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of non-redex constants or atoms is more general?
|
||||
Back: The non-redex atoms.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657660-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In a combinatory logic system, what is a closed term?
|
||||
Back: A $CL$-term with no variables.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657661-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In a combinatory logic system, what is a combinator?
|
||||
Back: A closed term with no atomic constants.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657662-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In a pure combinatory logic system, what distinguishes closed terms from combinators?
|
||||
Back: N/A. They are equivalent.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657663-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In an applied combinatory logic system, what distinguishes closed terms from combinators?
|
||||
Back: Closed terms are permitted to have atomic constants other than the basic combinators.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657664-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $CL$-term $(\mathbf{S}0)$ a closed term?
|
||||
Back: Yes.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657665-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $CL$-term $(\mathbf{S}x)$ a closed term?
|
||||
Back: No, assuming $x$ is a variable.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657666-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $CL$-term $(\mathbf{S}0)$ a combinator?
|
||||
Back: No.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657667-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $CL$-term $(\mathbf{S}x)$ a combinator?
|
||||
Back: No.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657668-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what kind of combinator logic are closed terms equivalent to combinators?
|
||||
Back: Pure systems.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657669-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A {1:$CL$}-term is to {2:combinatory logic} whereas a {2:$\lambda$}-term is to {1:$\lambda$-calculus}.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657670-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the non-redex constants in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
||||
Back: Just $0$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657671-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the redex constants in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
||||
Back: Each $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657672-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the non-redex atoms in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
||||
Back: $x$ and $0$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657673-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the redex atoms in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
||||
Back: Each $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735413657674-->
|
||||
END%%
|
||||
|
||||
## Basic Combinators
|
||||
|
||||
The combinatory logic is a notation that eliminate the need for quantified variables. We start with basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. These **basic combinators** are defined as:
|
||||
|
||||
* $\mathbf{S}$ (the starling); $(\mathbf{S}(f, g))(x) = f(x, g(x))$
|
||||
* $\mathbf{K}$ (the kestrel); $(\mathbf{K}(a))(x) = a$
|
||||
* $\mathbf{I}$ (the idiot bird); $\mathbf{I}(f) = f$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the $\mathbf{S}$ combinator defined?
|
||||
Back: As $(\mathbf{S}(f, g))(x) = f(x, g(x))$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735403774398-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name does Smullyan give the $\mathbf{S}$ combinator?
|
||||
Back: The starling.
|
||||
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
||||
<!--ID: 1735403774399-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the starling combinator defined?
|
||||
Back: As $(\mathbf{S}(f, g))(x) = f(x, g(x))$.
|
||||
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
||||
<!--ID: 1735404184954-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the $\mathbf{K}$ combinator defined?
|
||||
Back: As $(\mathbf{K}(a))(x) = a$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735403774400-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name does Smullyan give the $\mathbf{K}$ combinator?
|
||||
Back: The kestrel.
|
||||
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
||||
<!--ID: 1735403774401-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the kestrel combinator defined?
|
||||
Back: As $(\mathbf{K}(a))(x) = a$.
|
||||
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
||||
<!--ID: 1735404184957-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the $\mathbf{I}$ combinator defined?
|
||||
Back: As $I(f) = f$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1735403774402-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name does Smullyan give the $\mathbf{I}$ combinator?
|
||||
Back: The idiot bird.
|
||||
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
||||
<!--ID: 1735403774403-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the idiot bird combinator defined?
|
||||
Back: As $I(f) = f$.
|
||||
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
||||
<!--ID: 1735404184959-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Combinatory Logic.” In _Wikipedia_, August 25, 2024. [https://en.wikipedia.org/w/index.php?title=Combinatory_logic](https://en.wikipedia.org/w/index.php?title=Combinatory_logic&oldid=1242193088).
|
||||
* Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
* Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
|
@ -74,7 +74,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many variables exist in a $\lambda$-calculus formal system?
|
||||
How many variables exist in a $\lambda$-calculus system?
|
||||
Back: An infinite number.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716494526306-->
|
||||
|
@ -82,7 +82,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many atomic constants exist in a $\lambda$-calculus formal system?
|
||||
How many atomic constants exist in a $\lambda$-calculus system?
|
||||
Back: Zero or more.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716494526309-->
|
||||
|
@ -90,15 +90,15 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes variables and atomic constants?
|
||||
Back: The latter is meant to refer to constants outside the formal system.
|
||||
What distinguishes variables and atomic constants in the $\lambda$-calculus?
|
||||
Back: The latter is meant to refer to constants outside the system.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716494526312-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two classes of expressions does an "atom" potentially refer to?
|
||||
What two classes of expressions does an "atom" potentially refer to in the $\lambda$-calculus?
|
||||
Back: Variables and atomic constants.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716494526316-->
|
||||
|
@ -106,7 +106,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What general term describes both variables and atomic constants?
|
||||
What general term refers to both variables and atomic constants in the $\lambda$-calculus?
|
||||
Back: Atoms.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716494526319-->
|
||||
|
@ -114,7 +114,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why are variables and atomic constants called "atoms"?
|
||||
Why are variables and atomic constants called "atoms" in the $\lambda$-calculus?
|
||||
Back: They are not composed of smaller $\lambda$-terms.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716494526322-->
|
||||
|
|
Loading…
Reference in New Issue