Notes on combinatory logic.

main
Joshua Potter 2024-12-28 12:22:08 -07:00
parent 3187a91194
commit ff41225190
4 changed files with 438 additions and 11 deletions

View File

@ -613,7 +613,7 @@
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
"_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3",
"lambda-calculus/alpha-conversion.md": "a68f3cc1565fb26335218986808a1190",
"lambda-calculus/index.md": "1e2d544f08f1564c4d3aa874d5e09745",
"lambda-calculus/index.md": "14bf297d4314414723c11a11211b35b5",
"x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656",
"x86-64/instructions/logical.md": "a15c7da43cb97badef8ba4f8aadf9cbb",
"x86-64/instructions/arithmetic.md": "e2c4c9caa51e089e313d6c9d3c3c0a12",
@ -1070,7 +1070,10 @@
"_journal/2024-12-26.md": "022aeaf68d46fd39b23aca9c577f3f41",
"_journal/2024-12/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
"_journal/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
"_journal/2024-12/2024-12-26.md": "59e59cad1ae568adbe8e27e98d36c59c"
"_journal/2024-12/2024-12-26.md": "59e59cad1ae568adbe8e27e98d36c59c",
"combinators/index.md": "37ba794ba9a5ab84eb7452ed0a31aeec",
"_journal/2024-12-28.md": "7692126f76a32b785744adcbc76a58cb",
"_journal/2024-12/2024-12-27.md": "abc4a39a50305f3558181189eefb2058"
},
"fields_dict": {
"Basic": [

View File

@ -2,8 +2,10 @@
title: "2024-12-28"
---
- [ ] Anki Flashcards
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Beginning notes on [[combinators/index|combinatory logic]].

422
notes/combinators/index.md Normal file
View File

@ -0,0 +1,422 @@
---
title: Combinators
TARGET DECK: Obsidian::STEM
FILE TAGS: combinator
tags:
- combinator
---
## Overview
Assume that there is given an infinite sequence of expressions called **variables** and a finite or infinite sequence of expressions called **atomic constants**, different from the variables. Included in the atomic constants are some [[#Basic Combinators|basic combinators]]. The set of expressions called $CL$-terms is defined inductively as follows:
* all variables and atomic constants are $CL$-terms;
* if $X$ and $Y$ are $CL$-terms, then so is $(XY)$.
An **atom** is a variable or atomic constant. A **non-redex constant** is any atomic constant other than the basic combinators. A **non-redex atom** is a variable or non-redex constant. A **closed term** is a term containing no variables. A **combinator** is a closed term containing no atomic constants other than the basic combinators.
If the sequence of atomic constants is empty (besides the basic combinators), the system is called **pure**. Otherwise it is called **applied**.
%%ANKI
Basic
Who is usually attributed the creation of combinatory logic system?
Back: Moses Schönfinkel.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657635-->
END%%
%%ANKI
Basic
How many variables exist in a combinatory logic system?
Back: An infinite number.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657636-->
END%%
%%ANKI
Basic
How many atomic constants exist in a combinatory logic system?
Back: Zero or more.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657637-->
END%%
%%ANKI
Basic
What distinguishes variables and atomic constants in a combinatory logic system?
Back: The latter is meant to refer to constants outside the formal system.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657638-->
END%%
%%ANKI
Basic
What two classes of expressions does an "atom" potentially refer to in a combinatory logic system?
Back: Variables and atomic constants.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657639-->
END%%
%%ANKI
Basic
What general term refers to both variables and atomic constants in a combinatory logic system?
Back: Atoms.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657640-->
END%%
%%ANKI
Basic
Why are variables and atomic constants called "atoms" in a combinatory logic system?
Back: They are not composed of smaller $CL$-terms.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657641-->
END%%
%%ANKI
Basic
When is a combinatory logic system considered pure?
Back: When there exist no atomic constants in the system (besides the basic combinators).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657642-->
END%%
%%ANKI
Basic
When is a combinatory logic system considered applied?
Back: When there exists at least one atomic constant in the system (besides the basic combinators).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657643-->
END%%
%%ANKI
Cloze
A combinatory logic system is either {pure} or {applied}.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657644-->
END%%
%%ANKI
Basic
What term refers to the base case of the $CL$-term definition?
Back: The atoms.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657645-->
END%%
%%ANKI
Basic
What expression refers to the inductive cases of the $CL$-term definition?
Back: For $CL$-terms $X$ and $Y$, $(XY)$ is a $CL$-term.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657646-->
END%%
%%ANKI
Basic
Consider $CL$-term $(S0)$. Is our combinatory logic system pure or applied?
Back: Applied.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657647-->
END%%
%%ANKI
Basic
Consider $CL$-term $(SS)$. Is our combinatory logic system pure or applied?
Back: Indeterminate.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657648-->
END%%
%%ANKI
Basic
What atomic constants are permitted in a pure combinatory logic system?
Back: Just the basic combinators.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657649-->
END%%
%%ANKI
Basic
What variables are permitted in a pure combinatory logic system?
Back: Any.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657650-->
END%%
%%ANKI
Basic
What atomic constants are permitted in an applied combinatory logic system?
Back: Any.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657651-->
END%%
%%ANKI
Basic
What variables are permitted in an applied combinatory logic system?
Back: Any.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657652-->
END%%
%%ANKI
Basic
What atoms are permitted in a pure combinatory logic system?
Back: All variables and the basic combinators.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657653-->
END%%
%%ANKI
Basic
What atoms are permitted in an applied combinatory logic system?
Back: Any.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657654-->
END%%
%%ANKI
Basic
What are the non-redex constants in a combinatory logic system?
Back: Any atomic constant other than the basic combinators.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657655-->
END%%
%%ANKI
Basic
What are the redex constants in a combinatory logic system?
Back: The basic combinators.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657656-->
END%%
%%ANKI
Basic
What are the non-redex atoms in a combinatory logic system?
Back: Any variable or non-redex constant.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657657-->
END%%
%%ANKI
Basic
What are the redex atoms in a combinatory logic system?
Back: The basic combinators.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657658-->
END%%
%%ANKI
Basic
What distinguishes non-redex constants from non-redex atoms?
Back: The latter also refer to variables.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657659-->
END%%
%%ANKI
Basic
Which of non-redex constants or atoms is more general?
Back: The non-redex atoms.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657660-->
END%%
%%ANKI
Basic
In a combinatory logic system, what is a closed term?
Back: A $CL$-term with no variables.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657661-->
END%%
%%ANKI
Basic
In a combinatory logic system, what is a combinator?
Back: A closed term with no atomic constants.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657662-->
END%%
%%ANKI
Basic
In a pure combinatory logic system, what distinguishes closed terms from combinators?
Back: N/A. They are equivalent.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657663-->
END%%
%%ANKI
Basic
In an applied combinatory logic system, what distinguishes closed terms from combinators?
Back: Closed terms are permitted to have atomic constants other than the basic combinators.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657664-->
END%%
%%ANKI
Basic
Is $CL$-term $(\mathbf{S}0)$ a closed term?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657665-->
END%%
%%ANKI
Basic
Is $CL$-term $(\mathbf{S}x)$ a closed term?
Back: No, assuming $x$ is a variable.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657666-->
END%%
%%ANKI
Basic
Is $CL$-term $(\mathbf{S}0)$ a combinator?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657667-->
END%%
%%ANKI
Basic
Is $CL$-term $(\mathbf{S}x)$ a combinator?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657668-->
END%%
%%ANKI
Basic
In what kind of combinator logic are closed terms equivalent to combinators?
Back: Pure systems.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657669-->
END%%
%%ANKI
Cloze
A {1:$CL$}-term is to {2:combinatory logic} whereas a {2:$\lambda$}-term is to {1:$\lambda$-calculus}.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657670-->
END%%
%%ANKI
Basic
What are the non-redex constants in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
Back: Just $0$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657671-->
END%%
%%ANKI
Basic
What are the redex constants in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
Back: Each $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657672-->
END%%
%%ANKI
Basic
What are the non-redex atoms in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
Back: $x$ and $0$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657673-->
END%%
%%ANKI
Basic
What are the redex atoms in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
Back: Each $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735413657674-->
END%%
## Basic Combinators
The combinatory logic is a notation that eliminate the need for quantified variables. We start with basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. These **basic combinators** are defined as:
* $\mathbf{S}$ (the starling); $(\mathbf{S}(f, g))(x) = f(x, g(x))$
* $\mathbf{K}$ (the kestrel); $(\mathbf{K}(a))(x) = a$
* $\mathbf{I}$ (the idiot bird); $\mathbf{I}(f) = f$
%%ANKI
Basic
How is the $\mathbf{S}$ combinator defined?
Back: As $(\mathbf{S}(f, g))(x) = f(x, g(x))$.
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735403774398-->
END%%
%%ANKI
Basic
What name does Smullyan give the $\mathbf{S}$ combinator?
Back: The starling.
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
<!--ID: 1735403774399-->
END%%
%%ANKI
Basic
How is the starling combinator defined?
Back: As $(\mathbf{S}(f, g))(x) = f(x, g(x))$.
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
<!--ID: 1735404184954-->
END%%
%%ANKI
Basic
How is the $\mathbf{K}$ combinator defined?
Back: As $(\mathbf{K}(a))(x) = a$.
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735403774400-->
END%%
%%ANKI
Basic
What name does Smullyan give the $\mathbf{K}$ combinator?
Back: The kestrel.
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
<!--ID: 1735403774401-->
END%%
%%ANKI
Basic
How is the kestrel combinator defined?
Back: As $(\mathbf{K}(a))(x) = a$.
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
<!--ID: 1735404184957-->
END%%
%%ANKI
Basic
How is the $\mathbf{I}$ combinator defined?
Back: As $I(f) = f$.
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1735403774402-->
END%%
%%ANKI
Basic
What name does Smullyan give the $\mathbf{I}$ combinator?
Back: The idiot bird.
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
<!--ID: 1735403774403-->
END%%
%%ANKI
Basic
How is the idiot bird combinator defined?
Back: As $I(f) = f$.
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
<!--ID: 1735404184959-->
END%%
## Bibliography
* “Combinatory Logic.” In _Wikipedia_, August 25, 2024. [https://en.wikipedia.org/w/index.php?title=Combinatory_logic](https://en.wikipedia.org/w/index.php?title=Combinatory_logic&oldid=1242193088).
* Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
* Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.

View File

@ -74,7 +74,7 @@ END%%
%%ANKI
Basic
How many variables exist in a $\lambda$-calculus formal system?
How many variables exist in a $\lambda$-calculus system?
Back: An infinite number.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716494526306-->
@ -82,7 +82,7 @@ END%%
%%ANKI
Basic
How many atomic constants exist in a $\lambda$-calculus formal system?
How many atomic constants exist in a $\lambda$-calculus system?
Back: Zero or more.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716494526309-->
@ -90,15 +90,15 @@ END%%
%%ANKI
Basic
What distinguishes variables and atomic constants?
Back: The latter is meant to refer to constants outside the formal system.
What distinguishes variables and atomic constants in the $\lambda$-calculus?
Back: The latter is meant to refer to constants outside the system.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716494526312-->
END%%
%%ANKI
Basic
What two classes of expressions does an "atom" potentially refer to?
What two classes of expressions does an "atom" potentially refer to in the $\lambda$-calculus?
Back: Variables and atomic constants.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716494526316-->
@ -106,7 +106,7 @@ END%%
%%ANKI
Basic
What general term describes both variables and atomic constants?
What general term refers to both variables and atomic constants in the $\lambda$-calculus?
Back: Atoms.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716494526319-->
@ -114,7 +114,7 @@ END%%
%%ANKI
Basic
Why are variables and atomic constants called "atoms"?
Why are variables and atomic constants called "atoms" in the $\lambda$-calculus?
Back: They are not composed of smaller $\lambda$-terms.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716494526322-->