Update daily notes.
parent
aa6d8db120
commit
faaf57cb96
|
@ -611,7 +611,7 @@
|
|||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||
"set/functions.md": "7c2522a117917e6f96d2c701deee084d",
|
||||
"set/functions.md": "f10998cb17657526363f57c077f7a6f1",
|
||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"lambda-calculus/beta-reduction.md": "0935987f2bac0e6298735f2b26fd5885",
|
||||
|
@ -928,8 +928,10 @@
|
|||
"_journal/2024-11/2024-11-08.md": "806bbade5f8339579287687f9433334e",
|
||||
"_journal/2024-11/2024-11-07.md": "434ec3f15d7065ea740127aa8477dd17",
|
||||
"x86-64/directives.md": "019c1c1d04efb26c3e8758aac4543cc7",
|
||||
"geometry/cartesian.md": "199e29cf8debdff01d12528a50f08a92",
|
||||
"geometry/index.md": "679dcd097f4bebe417828c695444c88c"
|
||||
"geometry/cartesian.md": "b7003f70ab4822aa6eb4b84ba35f6e65",
|
||||
"geometry/index.md": "679dcd097f4bebe417828c695444c88c",
|
||||
"_journal/2024-11-10.md": "5478337fd2017b99d0b359713a511e66",
|
||||
"_journal/2024-11/2024-11-09.md": "46f3a640223ef533f4523837b67b57c3"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-11-16"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-11-10"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Finished chapter 4 "Natural Numbers" of Enderton's "Elements of Set Theory."
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-11-11"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-11-16"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-11-16"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-11-16"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-11-16"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -12,14 +12,14 @@ In plane analytic geometry, the **Cartesian coordinate system** uniquely specifi
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {$x$-coordinate} of a point is sometimes called its {abscissa).
|
||||
The {$x$-coordinate} of a point is sometimes called its {abscissa}.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1731184865785-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {$y$-coordinate} of a point is sometimes called its {ordinate).
|
||||
The {$y$-coordinate} of a point is sometimes called its {ordinate}.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1731184865791-->
|
||||
END%%
|
||||
|
|
|
@ -1904,7 +1904,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Let $C_*$ be the closure of $A$ under $f$ defined in terms of function $h$. What is $h$'s codomain?
|
||||
Back: Assume $A \subseteq B$ and $f \colon B \rightarrow B$. Then $h$'s codomain is $B$.
|
||||
Back: Assume $A \subseteq B$ and $f \colon B \rightarrow B$. Then $h$'s codomain is $\mathscr{P}(B)$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1729684379373-->
|
||||
END%%
|
||||
|
|
Loading…
Reference in New Issue