More notes on the recursion theorem and C loop constructs.
parent
baf5e52c0d
commit
f2781330db
|
@ -306,7 +306,7 @@
|
|||
"combinatorics/additive-principle.md": "d036ac511e382d5c1caca437341a5915",
|
||||
"_journal/2024-02-19.md": "30d16c5373deb9cb128d2e7934ae256a",
|
||||
"_journal/2024-02/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
||||
"combinatorics/permutations.md": "f2f3188f4e1142ec39de1e44ac5a1f0a",
|
||||
"combinatorics/permutations.md": "d8f81c9e4bf903913aa40bff4851ee71",
|
||||
"combinatorics/combinations.md": "396fc32255710eaf33213efaafdc43d4",
|
||||
"_journal/2024-02-20.md": "b85ba0eeeb16e30a602ccefabcc9763e",
|
||||
"_journal/2024-02/2024-02-19.md": "df1a9ab7ab89244021b3003c84640c78",
|
||||
|
@ -446,7 +446,7 @@
|
|||
"_journal/2024-04-16.md": "0bf6e2f2a3afab73d528cee88c4c1a92",
|
||||
"_journal/2024-04/2024-04-15.md": "256253b0633d878ca58060162beb7587",
|
||||
"algebra/polynomials.md": "da56d2d6934acfa2c6b7b2c73c87b2c7",
|
||||
"algebra/sequences/delta-constant.md": "5c8b3e48d054d332a54b85a439e135b8",
|
||||
"algebra/sequences/delta-constant.md": "b744b0d8decdfff4ad40b07af848bf74",
|
||||
"_journal/2024-04-19.md": "a293087860a7f378507a96df0b09dd2b",
|
||||
"_journal/2024-04/2024-04-18.md": "f6e5bee68dbef90a21ca92a846930a88",
|
||||
"_journal/2024-04/2024-04-17.md": "331423470ea83fc990c1ee1d5bd3b3f1",
|
||||
|
@ -508,7 +508,7 @@
|
|||
"_journal/2024-05/2024-05-06.md": "bc9306348b7063b87741768391d9d8a7",
|
||||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||
"git/remotes.md": "cbe2cd867f675f156e7fe71ec615890d",
|
||||
"git/remotes.md": "6fbbc95efa421c720e40500e5d133639",
|
||||
"programming/pred-trans.md": "c02471c6c9728dd19f8df7bc180ef8b1",
|
||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
|
@ -578,10 +578,10 @@
|
|||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||
"_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3",
|
||||
"lambda-calculus/alpha-conversion.md": "6df655e60976715e5c6fbbe72b628c6d",
|
||||
"lambda-calculus/index.md": "76d58f85c135c7df00081f47df31168e",
|
||||
"lambda-calculus/index.md": "aab579d6826d40d2984e5289c3f547e5",
|
||||
"x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656",
|
||||
"x86-64/instructions/logical.md": "49d40018f1fcb4ed1595d9175bbaab57",
|
||||
"x86-64/instructions/arithmetic.md": "1a8e0731c60f44b40366b475179377b8",
|
||||
"x86-64/instructions/arithmetic.md": "a6e6ef93b7c37b058cffc6dff5786ab7",
|
||||
"x86-64/instructions/access.md": "3efe399b89b947ab280dc1e045675390",
|
||||
"x86-64/instructions/index.md": "72c19067e938ab39ea51d25d6ac2bad9",
|
||||
"_journal/2024-06-09.md": "935b3ddf65c51e680ac5c000c7e380af",
|
||||
|
@ -598,7 +598,7 @@
|
|||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||
"set/functions.md": "b93f460500a6a7228607f842636ed3b3",
|
||||
"set/functions.md": "3d08bbd3fb31eba419058264ed804e22",
|
||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"lambda-calculus/beta-reduction.md": "0935987f2bac0e6298735f2b26fd5885",
|
||||
|
@ -687,9 +687,9 @@
|
|||
"logic/classical/index.md": "ee0a4b2bfcfa2cab0880db449cb62df1",
|
||||
"logic/classical/truth-tables.md": "b739e2824a4a5c26ac446e7c15ce02aa",
|
||||
"formal-system/proof-system/index.md": "800e93b72a9852ea4823ab0a40854bba",
|
||||
"formal-system/proof-system/equiv-trans.md": "e2eae52f49249b622b87c7fd06967666",
|
||||
"formal-system/proof-system/equiv-trans.md": "fd837abff3eaac4f4c949a1bb69127c5",
|
||||
"formal-system/logical-system/index.md": "708bb1547e7343c236068c18da3f5dc0",
|
||||
"formal-system/logical-system/pred-logic.md": "34e872f4f920bf4e8c2cd00ee95b310f",
|
||||
"formal-system/logical-system/pred-logic.md": "4559020fde708b9d0184d9fd56559c98",
|
||||
"formal-system/logical-system/prop-logic.md": "b61ce051795d5a951c763b928ec5cea8",
|
||||
"formal-system/index.md": "28b596a8ffa7dca05e8c0b890be43aec",
|
||||
"programming/short-circuit.md": "c256ced42dc3b493aff5a356e5383b6e",
|
||||
|
@ -698,7 +698,7 @@
|
|||
"_journal/2024-07/2024-07-21.md": "62c2651999371dd9ab10d964dac3d0f8",
|
||||
"formal-system/proof-system/natural-deduction.md": "f105a27843518778cb6662652a9d7aed",
|
||||
"startups/term-sheet.md": "6b6152af78addb3fe818a7fc9d375fbf",
|
||||
"startups/financing-rounds.md": "00a622fda2b4b442901bde2842309088",
|
||||
"startups/financing-rounds.md": "fc242cd68de8cdd654552335d84d3bda",
|
||||
"_journal/2024-07-23.md": "35e18a1d9a8dd0a97e1d9898bc1d8f01",
|
||||
"_journal/2024-07/2024-07-22.md": "8170a92496c2c5374fc3411bddf3b17d",
|
||||
"_journal/2024-07-24.md": "9a7bdbfc23996908645d00dd622db6bf",
|
||||
|
@ -758,7 +758,7 @@
|
|||
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
||||
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
|
||||
"set/order.md": "07f5799751f0b4080c13626a0b8c95ef",
|
||||
"set/order.md": "6c0e404f6d228919b2a7d741476ebeca",
|
||||
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
||||
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||
|
@ -766,7 +766,7 @@
|
|||
"_journal/2024-08/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||
"calculus/bounds.md": "cbae7421eaa096cd17a2f9de079f593d",
|
||||
"calculus/index.md": "5ee4d950533ae330ca5ef9e113fe87f3",
|
||||
"x86-64/instructions/conditions.md": "e95de2b5a5e47a8d00e66020a5c6ee15",
|
||||
"x86-64/instructions/conditions.md": "60f1b9a7779bf4e5a817699b60e727eb",
|
||||
"_journal/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
"algebra/arch-prop.md": "bca3724ef5aae3f7f20907108087af47",
|
||||
"_journal/2024-08/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||
|
@ -775,7 +775,7 @@
|
|||
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
|
||||
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
|
||||
"set/natural-numbers.md": "676bf8295cf8ea27dbcb2750de4ae197",
|
||||
"set/natural-numbers.md": "52f33a992318b164829eaeab07f1c58c",
|
||||
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
|
||||
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
|
||||
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
|
||||
|
@ -783,7 +783,7 @@
|
|||
"c17/enums.md": "9414fb67aa256a0a11b7240534c67bf6",
|
||||
"c17/derived-types.md": "6fb8f23a2423f05d5bdccb6672a32e38",
|
||||
"c17/basic-types.md": "7c6653bf6dc24c2f2aa72fc95c4f7875",
|
||||
"c17/types/simple.md": "d9579d4f34e525494f63fbaa72e00f70",
|
||||
"c17/types/simple.md": "78ad78da8382f8af6418b519409b927d",
|
||||
"c17/types/enumerated.md": "e1f70a30677c776b7b44ac3e0ff4e76d",
|
||||
"c17/types/derived.md": "aff0d2b6d218fb67af3cc92ead924de3",
|
||||
"c17/types/basic.md": "5064e21e683c0218890058882e06b6f3",
|
||||
|
@ -848,7 +848,7 @@
|
|||
"_journal/2024-09-28.md": "7726baed125a2561def07dcaf48bf5a0",
|
||||
"_journal/2024-09/2024-09-27.md": "d788fa04c029009f42387317c549d93e",
|
||||
"encoding/binary.md": "0b9beb6913906aa2523d8ab193c67f67",
|
||||
"_journal/2024-09-29.md": "0afacc43ea98a86a50a5248e0d7afba6",
|
||||
"_journal/2024-09-29.md": "232733c9ad7ebd89e8834cd61e1536d7",
|
||||
"_journal/2024-09/2024-09-28.md": "1b47792313acf09b1ae768d5918df703"
|
||||
},
|
||||
"fields_dict": {
|
||||
|
|
|
@ -2,8 +2,11 @@
|
|||
title: "2024-09-29"
|
||||
---
|
||||
|
||||
- [ ] Anki Flashcards
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Flashcards on the proof of the recursion theorem on $\omega$.
|
||||
* Read through how different C loop constructs are compiled into assembly.
|
|
@ -46,8 +46,8 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the recurrence of the recursive definition of the $(k + 1)$st differences of $(a_n)$?
|
||||
Back: The $(k + 1)$st differences is the differences of the $k$th differences.
|
||||
How are the $(k + 1)$st differences of $(a_n)$ defined recursively?
|
||||
Back: As the differences of the $k$th differences of $(a_n)$.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109153-->
|
||||
END%%
|
||||
|
|
|
@ -104,7 +104,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
$n!$ is shorthand for what other "big operator" formula?
|
||||
$n!$ is an abbreviation of what "big operator" formula?
|
||||
Back: $\Pi_{k=1}^n k$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708366788594-->
|
||||
|
|
|
@ -92,7 +92,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
$\exists x : S, P(x)$ is shorthand for what?
|
||||
$\exists x : S, P(x)$ is an abbreviation for what?
|
||||
Back: $\exists x, x \in S \land P(x)$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707494819968-->
|
||||
|
@ -261,7 +261,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
$\forall x : S, P(x)$ is shorthand for what?
|
||||
$\forall x : S, P(x)$ is an abbreviation for what?
|
||||
Back: $\forall x, x \in S \Rightarrow P(x)$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707494819976-->
|
||||
|
|
|
@ -1393,7 +1393,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What proposition represents states $\{(b, T), (c, T)\}$ and $\{(b, F), (c, F)\}$?
|
||||
What DNF proposition represents states $\{(b, T), (c, T)\}$ and $\{(b, F), (c, F)\}$?
|
||||
Back: $(b \land c) \lor (\neg b \land \neg c)$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861337-->
|
||||
|
|
|
@ -30,14 +30,6 @@ Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Soft
|
|||
<!--ID: 1715623927187-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Where are git remotes specified within the `.git` directory?
|
||||
Back: In `.git/config`
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1715623927191-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of git refs are associated with remotes?
|
||||
|
|
|
@ -370,7 +370,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The phrase "{induction on $M$}" is shorthand for phrase "{induction on $lgh(M)$}".
|
||||
The phrase "{induction on $M$}" is an abbrevation of phrase "{induction on $lgh(M)$}".
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716743248113-->
|
||||
END%%
|
||||
|
|
|
@ -1747,7 +1747,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $F \colon A \rightarrow B$. Term "$\mathop{\text{coim}}F$" is shorthand for what?
|
||||
Let $F \colon A \rightarrow B$. Term "$\mathop{\text{coim}}F$" is an abbreviation for what?
|
||||
Back: The **coim**age of $F$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1721223015596-->
|
||||
|
|
|
@ -850,6 +850,14 @@ Reference: “Recursion,” in _Wikipedia_, September 23, 2024, [https://en.wiki
|
|||
<!--ID: 1727492422625-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The recursion theorem assumes existence of what Peano system?
|
||||
Back: $\langle \omega, \sigma, 0 \rangle$ where $\sigma$ is the successor operation restricted to the natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727629020357-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What entities does the recursion theorem presume the existence of?
|
||||
|
@ -906,14 +914,6 @@ Reference: “Recursion,” in _Wikipedia_, September 23, 2024, [https://en.wiki
|
|||
<!--ID: 1727492422693-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The recursion theorem proves $h$ exists. What kind of mathematical entity is $h$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727492422702-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The recursion theorem proves function $h$ exists. What is the domain of $h$?
|
||||
|
@ -938,6 +938,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1727492422716-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The recursion theorem shows existence of $h \colon \omega \rightarrow A$. What is $A$?
|
||||
Back: A set fixed before application of the recursion theorem.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727629020364-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $a \in A$ and $F \colon A \rightarrow A$. Using the recursion theorem, how else is $F(F(F(F(a))))$ expressed?
|
||||
|
@ -954,6 +962,107 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1727492422724-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In Enderton's recursion theorem proof, function $h \colon \omega \rightarrow A$ is defined as the union of what?
|
||||
Back: All "acceptable" functions.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702457-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In Enderton's recursion theorem proof, what is the domain of an acceptable function?
|
||||
Back: A subset of $\omega$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702459-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In Enderton's recursion theorem proof, what is the codomain of an acceptable function?
|
||||
Back: A subset of some fixed set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702461-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In Enderton's recursion theorem proof, what follows if $0 \in \mathop{\text{dom}} v$ for acceptable function $v$?
|
||||
Back: $v(0) = a$ for some fixed $a \in A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702462-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In Enderton's recursion theorem proof, what follows if $n^+ \in \mathop{\text{dom}} v$ for acceptable function $v$?
|
||||
Back: $n \in \mathop{\text{dom}} v$ and $v(n^+) = F(v(n))$ for some fixed $F \colon A \rightarrow A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702464-->
|
||||
END%%
|
||||
\
|
||||
%%ANKI
|
||||
Basic
|
||||
In Enderton's recursion theorem proof, what term refers to the "approximating" functions?
|
||||
Back: They are called "acceptable".
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702465-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
In Enderton's recursion theorem proof, desired $h \colon \omega \rightarrow A$ is defined as $\bigcup$ {$\{ v \mid v \text{ is acceptable} \}$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702466-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
In Enderton's recursion theorem proof, desired $h \colon \omega \rightarrow A$ is {a function} because {$\{ n \in \omega \mid \text{ at most one } y \text{ such that } \langle n, y \rangle \in h \}$} is {an inductive set}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702468-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In Enderton's recursion theorem proof, how is it shown the domain of desired $h \colon \omega \rightarrow A$ equals $\omega$?
|
||||
Back: By proving $\mathop{\text{dom}} h$ is an inductive set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702469-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
In Enderton's recursion theorem proof,desired $h \colon \omega \rightarrow A$ is {unique} because {$\{ n \in \omega \mid h_1(n) = h_2(n) \}$} is {an inductive set}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727627702470-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* is there no function $h \colon \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all $n \in \mathbb{Z}$, $$\begin{align*} h(0) & = 0 \\ h(n + 1) & = h(n) + 1 \end{align*}$$
|
||||
Back: Because $\mathbb{Z}$ has no "starting point" to ground the recursive definition.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727629020369-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* is there no function $h \colon \mathbb{N} \rightarrow \mathbb{N}$ such that for all $n \in \mathbb{N}$$, $$\begin{align*} h(0) & = 0 \\ h(n + 1) & = h(n) + 1 \end{align*}$$
|
||||
Back: N/A. The resursive theorem of $\omega$ states such an $h$ exists.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727629020375-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what natural way could we generalize the recursion theorem on $\omega$?
|
||||
Back: By stating the theorem in terms of arbitrary Peano systems.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727629232445-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
|
|
|
@ -350,8 +350,8 @@ A binary relation $R$ on set $A$ is an **equivalence relation on $A$** iff it is
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given $R = \{\langle a, a \rangle, \langle b, b \rangle\}$, which of reflexivity (on $\{a, b\}$), symmetry, and transitivity does $R$ exhibit?
|
||||
Back: Reflexivity on $\{a, b\}$ and symmetry.
|
||||
Given $R = \{\langle a, a \rangle, \langle b, b \rangle\}$, which of reflexivity, symmetry, and/or transitivity does $R$ exhibit?
|
||||
Back: All three.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720967429839-->
|
||||
END%%
|
||||
|
@ -562,8 +562,8 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\Pi$ be a partition of set $A$. What property must each *individual* member of $\Pi$ exhibit?
|
||||
Back: Each member is nonempty.
|
||||
Let $\Pi$ be a partition of set $A$. What two properties must each *individual* member of $\Pi$ exhibit?
|
||||
Back: Each member is a nonempty subset of $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1721098094065-->
|
||||
END%%
|
||||
|
|
|
@ -377,7 +377,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
An {angel} is a shorthand term for an {angel investor}.
|
||||
An {angel} is an abbreviated term for an {angel investor}.
|
||||
Reference: Brad Feld and Jason Mendelson, _Venture Deals_, 3rd ed., n.d.
|
||||
<!--ID: 1719360934700-->
|
||||
END%%
|
||||
|
|
|
@ -98,20 +98,20 @@ Assume `%rbx` holds $p$. What is the value of `%rax` in the following?
|
|||
```asm
|
||||
leaq 2(%rbx, %rbx, 7),%rax
|
||||
```
|
||||
Back: $2 + 8p$
|
||||
Back: N/A. A scaling factor of $7$ is not allowed.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1715781031938-->
|
||||
<!--ID: 1727629670917-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume `%rdx` holds $q$. What is the value of `%rax` in the following?
|
||||
```asm
|
||||
leaq 0xE(, %rdx, 3),%rax
|
||||
leaq 0xE(, %rdx, 4),%rax
|
||||
```
|
||||
Back: $14 + 3q$
|
||||
Back: $14 + 4q$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1715781031941-->
|
||||
<!--ID: 1727629670921-->
|
||||
END%%
|
||||
|
||||
### Unary Operations
|
||||
|
|
|
@ -898,6 +898,37 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
<!--ID: 1727357091109-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In most cases, how can the following `for` loop be rewritten as a `while` loop?
|
||||
```c
|
||||
for (init; test; update) { body; }
|
||||
```
|
||||
Back:
|
||||
```c
|
||||
init;
|
||||
while (test) { body; update }
|
||||
```
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1727632288464-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what situation are the following two blocks of code not equivalent?
|
||||
```c
|
||||
for (init; test; update) { body; }
|
||||
|
||||
init;
|
||||
while (test) { body; update }
|
||||
```
|
||||
Back: Situations in which the `for`-loop has a `continue` statement in the `body`.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1727632288468-->
|
||||
END%%
|
||||
|
||||
### CMOV
|
||||
|
||||
Like [[access#MOV|MOV]] instructions, but with the data transfer only happening if the move condition is satisfied.
|
||||
|
|
Loading…
Reference in New Issue