Reorganize finite automata. Flashcard fixups.
parent
3dbe49bb1b
commit
f0f7eb4621
|
@ -226,7 +226,15 @@
|
||||||
"**/*.excalidraw.md"
|
"**/*.excalidraw.md"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"Added Media": [],
|
"Added Media": [
|
||||||
|
"dfa-example.png",
|
||||||
|
"dfa-ends1.png",
|
||||||
|
"dfa-ends0.png",
|
||||||
|
"schroder-bernstein.png",
|
||||||
|
"dfs.gif",
|
||||||
|
"dfs-edge-classification.png",
|
||||||
|
"complex-plane-point.png"
|
||||||
|
],
|
||||||
"File Hashes": {
|
"File Hashes": {
|
||||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||||
"algorithms/sorting/index.md": "4a66e28bce754de5df31ec2f4aed7e93",
|
"algorithms/sorting/index.md": "4a66e28bce754de5df31ec2f4aed7e93",
|
||||||
|
@ -902,7 +910,7 @@
|
||||||
"_journal/2024-10/2024-10-16.md": "cd778e1be2737462d885ae038c7b9744",
|
"_journal/2024-10/2024-10-16.md": "cd778e1be2737462d885ae038c7b9744",
|
||||||
"_journal/2024-10/2024-10-15.md": "c21679bd2c3b29f5a86d56a1fd23b18f",
|
"_journal/2024-10/2024-10-15.md": "c21679bd2c3b29f5a86d56a1fd23b18f",
|
||||||
"_journal/2024-10-22.md": "4af65962007cfecdb2c679b44b56d25f",
|
"_journal/2024-10-22.md": "4af65962007cfecdb2c679b44b56d25f",
|
||||||
"algorithms/dfs.md": "53dc80b458c10e99f711237d84867cae",
|
"algorithms/dfs.md": "0f86e65b9ac6c4dbdd3b9c2a108a65fb",
|
||||||
"_journal/2024-10/2024-10-21.md": "de1a0861e87df29aeff11a291f8fbd45",
|
"_journal/2024-10/2024-10-21.md": "de1a0861e87df29aeff11a291f8fbd45",
|
||||||
"_journal/2024-10-23.md": "51b2ca6edf23b6a64fd7d3638a0b54cb",
|
"_journal/2024-10-23.md": "51b2ca6edf23b6a64fd7d3638a0b54cb",
|
||||||
"_journal/2024-10/2024-10-22.md": "5ff4eb7eba58e77c4fb65b7162a485e6",
|
"_journal/2024-10/2024-10-22.md": "5ff4eb7eba58e77c4fb65b7162a485e6",
|
||||||
|
@ -954,7 +962,7 @@
|
||||||
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||||
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||||
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
|
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
|
||||||
"set/cardinality.md": "a684ba2638e90d6d5647054230b3f35f",
|
"set/cardinality.md": "9610578a6ef32f70f90bfc7b52dea844",
|
||||||
"geometry/area.md": "7f947bb5ac782495a1fb4a63bb2463e7",
|
"geometry/area.md": "7f947bb5ac782495a1fb4a63bb2463e7",
|
||||||
"_journal/2024-11-23.md": "911f82ab8aede5ecdb96493aef64b0b9",
|
"_journal/2024-11-23.md": "911f82ab8aede5ecdb96493aef64b0b9",
|
||||||
"_journal/2024-11/2024-11-22.md": "51117030e2364dbce3a8d507dead86ae",
|
"_journal/2024-11/2024-11-22.md": "51117030e2364dbce3a8d507dead86ae",
|
||||||
|
@ -1014,7 +1022,7 @@
|
||||||
"_journal/2024-12-16.md": "d867a62a955f3d080ae25f31464d53c4",
|
"_journal/2024-12-16.md": "d867a62a955f3d080ae25f31464d53c4",
|
||||||
"_journal/2024-12/2024-12-15.md": "be66c8808d8bb66d4e7b91db7c93c94a",
|
"_journal/2024-12/2024-12-15.md": "be66c8808d8bb66d4e7b91db7c93c94a",
|
||||||
"linkers/elf.md": "0734c90bf5b09319ae1f3bdd965de1c1",
|
"linkers/elf.md": "0734c90bf5b09319ae1f3bdd965de1c1",
|
||||||
"c17/strings/printf.md": "8b67cfbccaf35dd9488b73e7e5555405",
|
"c17/strings/printf.md": "d3ec56f588a309f708efaa16b5951dfd",
|
||||||
"c17/strings/index.md": "3fa6f42967f3cc786740bb8537c62682",
|
"c17/strings/index.md": "3fa6f42967f3cc786740bb8537c62682",
|
||||||
"_journal/2024-12-17.md": "ae55db66c9835876c4a0343ac0806951",
|
"_journal/2024-12-17.md": "ae55db66c9835876c4a0343ac0806951",
|
||||||
"_journal/2024-12/2024-12-16.md": "03fe3263baca3bba63a9129595733d5f",
|
"_journal/2024-12/2024-12-16.md": "03fe3263baca3bba63a9129595733d5f",
|
||||||
|
@ -1029,7 +1037,7 @@
|
||||||
"_journal/2024-12/2024-12-20.md": "3c896dac68ce1bfb1f28cb7da4325c6c",
|
"_journal/2024-12/2024-12-20.md": "3c896dac68ce1bfb1f28cb7da4325c6c",
|
||||||
"encoding/xml/rdf.md": "f4491dd28b937da3182d701a863e40fe",
|
"encoding/xml/rdf.md": "f4491dd28b937da3182d701a863e40fe",
|
||||||
"encoding/xml/index.md": "01a66b1a102cccc682f8f1cab0f50bc6",
|
"encoding/xml/index.md": "01a66b1a102cccc682f8f1cab0f50bc6",
|
||||||
"ontology/reification.md": "8b51f0583bed52a366f2b1fe9608d094",
|
"ontology/reification.md": "cd2c785db81110099ecff1cbec9a2d5e",
|
||||||
"ontology/rdf.md": "fd273c30bec6f46b68547f0d392620b1",
|
"ontology/rdf.md": "fd273c30bec6f46b68547f0d392620b1",
|
||||||
"data-models/rdf.md": "4aa5af33cc8badada41ca165e05b1381",
|
"data-models/rdf.md": "4aa5af33cc8badada41ca165e05b1381",
|
||||||
"serialization/xml.md": "84b632282ebcc2b6216923a02abdd4c2",
|
"serialization/xml.md": "84b632282ebcc2b6216923a02abdd4c2",
|
||||||
|
@ -1038,7 +1046,7 @@
|
||||||
"_journal/2024-12-22.md": "015dbf675853a81db07d641e8dab7fd4",
|
"_journal/2024-12-22.md": "015dbf675853a81db07d641e8dab7fd4",
|
||||||
"_journal/2024-12/2024-12-21.md": "1c1a5791f7519c92e882957cf417b51f",
|
"_journal/2024-12/2024-12-21.md": "1c1a5791f7519c92e882957cf417b51f",
|
||||||
"formal-system/language.md": "7797d33a0b0eb187d43dda46a138fb25",
|
"formal-system/language.md": "7797d33a0b0eb187d43dda46a138fb25",
|
||||||
"computability/automaton.md": "adebd457532a94c801221e128e92decc",
|
"computability/automaton.md": "fbcaa13a3e2053f252c58f0662fe7ada",
|
||||||
"computability/index.md": "d7938428ed0b0224c1fe1e59d1fab118",
|
"computability/index.md": "d7938428ed0b0224c1fe1e59d1fab118",
|
||||||
"_journal/2024-12-23.md": "72b0964a8a5ed8ba0acf7fe10b5de279",
|
"_journal/2024-12-23.md": "72b0964a8a5ed8ba0acf7fe10b5de279",
|
||||||
"_journal/2024-12/2024-12-22.md": "75375a867efc5b3aff406c73394d4814",
|
"_journal/2024-12/2024-12-22.md": "75375a867efc5b3aff406c73394d4814",
|
||||||
|
@ -1049,13 +1057,13 @@
|
||||||
"_journal/2024-12/2024-12-23.md": "72b0964a8a5ed8ba0acf7fe10b5de279",
|
"_journal/2024-12/2024-12-23.md": "72b0964a8a5ed8ba0acf7fe10b5de279",
|
||||||
"_journal/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
"_journal/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
||||||
"_journal/2024-12/2024-12-24.md": "dcd3bd8b82ca4d47a9642a46d8bece0d",
|
"_journal/2024-12/2024-12-24.md": "dcd3bd8b82ca4d47a9642a46d8bece0d",
|
||||||
"linkers/relocatable.md": "58d45ac26d43c765b33cb9f88823a5ea",
|
"linkers/relocatable.md": "b6f0c13e07ed57ea73dea6b4a72560d1",
|
||||||
"data-models/federation.md": "1d92747304186bd2833a00a488fcac48",
|
"data-models/federation.md": "1d92747304186bd2833a00a488fcac48",
|
||||||
"_journal/2024-12-26.md": "022aeaf68d46fd39b23aca9c577f3f41",
|
"_journal/2024-12-26.md": "022aeaf68d46fd39b23aca9c577f3f41",
|
||||||
"_journal/2024-12/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
"_journal/2024-12/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
||||||
"_journal/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
|
"_journal/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
|
||||||
"_journal/2024-12/2024-12-26.md": "59e59cad1ae568adbe8e27e98d36c59c",
|
"_journal/2024-12/2024-12-26.md": "59e59cad1ae568adbe8e27e98d36c59c",
|
||||||
"combinators/index.md": "ca8ed1ce82da585b908e06c2b457922d",
|
"combinators/index.md": "8e324bbcf49cca9c0c0f9bbf843cbebb",
|
||||||
"_journal/2024-12-28.md": "1ad3caec4ea6f597cc5156f19b274c50",
|
"_journal/2024-12-28.md": "1ad3caec4ea6f597cc5156f19b274c50",
|
||||||
"_journal/2024-12/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
|
"_journal/2024-12/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
|
||||||
"_journal/2024-12-29.md": "e7808872f56a12b51165fc86a1c48e60",
|
"_journal/2024-12-29.md": "e7808872f56a12b51165fc86a1c48e60",
|
||||||
|
@ -1403,7 +1411,7 @@
|
||||||
"_journal/2025-01-01.md": "3cf29f753c27313c95a435a7845b4c13",
|
"_journal/2025-01-01.md": "3cf29f753c27313c95a435a7845b4c13",
|
||||||
"_journal/2025-01-02.md": "d836d831495d0646e7bf8c564579f9f1",
|
"_journal/2025-01-02.md": "d836d831495d0646e7bf8c564579f9f1",
|
||||||
"_journal/2025-01/2025-01-01.md": "3cf29f753c27313c95a435a7845b4c13",
|
"_journal/2025-01/2025-01-01.md": "3cf29f753c27313c95a435a7845b4c13",
|
||||||
"algebra/complex.md": "37befb93643418cd8905c49e2f53627b",
|
"algebra/complex.md": "56cb9e1f6da0fe1e75f750709a35803f",
|
||||||
"_journal/2025-01-03.md": "357ed3ed9951645822fd743bfa82c0c4",
|
"_journal/2025-01-03.md": "357ed3ed9951645822fd743bfa82c0c4",
|
||||||
"_journal/2025-01/2025-01-02.md": "34d34115bf1e09f72443aab02f33c7d8",
|
"_journal/2025-01/2025-01-02.md": "34d34115bf1e09f72443aab02f33c7d8",
|
||||||
"_journal/2025-01-05.md": "0217401ed8718d4354d856a92a19a345",
|
"_journal/2025-01-05.md": "0217401ed8718d4354d856a92a19a345",
|
||||||
|
@ -1420,7 +1428,7 @@
|
||||||
"_journal/2025-01/2025-01-10.md": "a7929276f89cc19193622dd1f1dd2588",
|
"_journal/2025-01/2025-01-10.md": "a7929276f89cc19193622dd1f1dd2588",
|
||||||
"_journal/2025-01/2025-01-09.md": "166ff75c5ea1bf5110931fa054e1565e",
|
"_journal/2025-01/2025-01-09.md": "166ff75c5ea1bf5110931fa054e1565e",
|
||||||
"_journal/2025-01/2025-01-08.md": "d8dbe63942449a91fbf793c318032e10",
|
"_journal/2025-01/2025-01-08.md": "d8dbe63942449a91fbf793c318032e10",
|
||||||
"_journal/2025-01-12.md": "a9bec846b6d23b24044eec112807d64e",
|
"_journal/2025-01-12.md": "78a1a91743280f9caf2e700ee0a0f830",
|
||||||
"_journal/2025-01/2025-01-11.md": "057a8b69a650941d1a838d220d5f59ab"
|
"_journal/2025-01/2025-01-11.md": "057a8b69a650941d1a838d220d5f59ab"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
|
|
|
@ -14,7 +14,7 @@ where $i$ is the **imaginary number** defined as $i^2 = -1$.
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How is set the complex numbers denoted?
|
How is the set of complex numbers denoted?
|
||||||
Back: As $\mathbb{C}$.
|
Back: As $\mathbb{C}$.
|
||||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||||
<!--ID: 1735870487309-->
|
<!--ID: 1735870487309-->
|
||||||
|
@ -76,7 +76,7 @@ Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh editi
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Cloze
|
Basic
|
||||||
What real number is identified with $-\pi + 0i$?
|
What real number is identified with $-\pi + 0i$?
|
||||||
Back: $-\pi$
|
Back: $-\pi$
|
||||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||||
|
@ -84,7 +84,7 @@ Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh editi
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Cloze
|
Basic
|
||||||
What real number is identified with $\pi + 2i$?
|
What real number is identified with $\pi + 2i$?
|
||||||
Back: N/A.
|
Back: N/A.
|
||||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||||
|
|
|
@ -584,7 +584,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $v$ be black when $\langle u, v \rangle$ is explored. If $u.d < v.d$, what kind of edge is $\langle u, v \rangle$ classified as?
|
Let $v$ be black when $\langle u, v \rangle$ is explored. If $u{.}d < v{.}d$, what kind of edge is $\langle u, v \rangle$ classified as?
|
||||||
Back: A forward edge.
|
Back: A forward edge.
|
||||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
<!--ID: 1735785232475-->
|
<!--ID: 1735785232475-->
|
||||||
|
@ -592,7 +592,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $v$ be black when $\langle u, v \rangle$ is explored. If $v.d < u.d$, what kind of edge is $\langle u, v \rangle$ classified as?
|
Let $v$ be black when $\langle u, v \rangle$ is explored. If $v{.}d < u{.}d$, what kind of edge is $\langle u, v \rangle$ classified as?
|
||||||
Back: A cross edge.
|
Back: A cross edge.
|
||||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
<!--ID: 1735785232480-->
|
<!--ID: 1735785232480-->
|
||||||
|
|
|
@ -683,7 +683,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How does `%g` handle non-integral values differently from `%f`?
|
How does `%g` handle non-integral values differently from `%f`?
|
||||||
Back: It excludes insignifant `0`s after the decimal point.
|
Back: It excludes insignificant `0`s after the decimal point.
|
||||||
Reference: “Printf,” in *Wikipedia*, January 18, 2024, [https://en.wikipedia.org/w/index.php?title=Printf&oldid=1196716962](https://en.wikipedia.org/w/index.php?title=Printf&oldid=1196716962).
|
Reference: “Printf,” in *Wikipedia*, January 18, 2024, [https://en.wikipedia.org/w/index.php?title=Printf&oldid=1196716962](https://en.wikipedia.org/w/index.php?title=Printf&oldid=1196716962).
|
||||||
<!--ID: 1710603411174-->
|
<!--ID: 1710603411174-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -235,7 +235,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
In a combinatory logic system, what is a combinator?
|
In a combinatory logic system, what is a combinator?
|
||||||
Back: A closed term with no atomic constants.
|
Back: A closed term with no atomic constants (besides the basic combinators).
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
<!--ID: 1735413657662-->
|
<!--ID: 1735413657662-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -7,275 +7,22 @@ tags:
|
||||||
- computability
|
- computability
|
||||||
---
|
---
|
||||||
|
|
||||||
## Finite Automata
|
## Overview
|
||||||
|
|
||||||
A **finite automaton** is a $5$-tuple $\langle Q, \Sigma, \delta, q_0, F \rangle$, where
|
**Finite automata** are classified as either **deterministic** or **nondeterministic**. These two representations are equivalent.
|
||||||
|
|
||||||
1. $Q$ is a finite set called the **states**;
|
If $s$ is processed by finite automaton $M$ such that $M$ finishes in an accept state, we say $M$ **accepts** $s$. Otherwise $M$ **rejects** $s$. If $A$ is the set of all strings that $M$ accepts, we say that $A$ is the **language of machine $M$**, denoted $L(M) = A$. We say that $M$ **recognizes** $A$.
|
||||||
2. $\Sigma$ is a finite set called the alphabet;
|
|
||||||
3. $\delta \colon Q \times \Sigma \rightarrow Q$ is the **transition function**;
|
|
||||||
4. $q_0 \in Q$ is the **start state**; and
|
|
||||||
5. $F \subseteq Q$ is the set of **final states**.
|
|
||||||
|
|
||||||
These automaton are typically denoted using a **state diagram** like below. The start state is indicated by an arrow pointing at it from nowhere. An accept state is denoted with a double circle.
|
A [[computability/index|language]] is called a **regular language** if a finite automaton recognizes it.
|
||||||
|
|
||||||
![[state-diagram.png]]
|
|
||||||
|
|
||||||
A [[language]] is called a **regular language** if a finite automaton recognizes it.
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
A finite automaton is defined as a tuple of how many components?
|
Finite automaton are largely classified in what two buckets?
|
||||||
Back: Five.
|
Back: Deterministic and nondeterministic.
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
<!--ID: 1734999643206-->
|
<!--ID: 1736721887587-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $Q$?
|
|
||||||
Back: A finite set of states.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643211-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $Q$?
|
|
||||||
Back: $M$'s states.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643215-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What is $\Sigma$?
|
|
||||||
Back: An alphabet.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643218-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $\delta$?
|
|
||||||
Back: A function.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643221-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $\delta$?
|
|
||||||
Back: $M$'s transition function.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643224-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What is $\delta$'s domain?
|
|
||||||
Back: $Q \times \Sigma$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643227-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What is $\delta$'s codomain?
|
|
||||||
Back: $Q$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643230-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $q_0$?
|
|
||||||
Back: An urelement.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643233-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $q_0$?
|
|
||||||
Back: $M$'s start state.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643238-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $F$?
|
|
||||||
Back: $M$'s final states.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643242-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $F$?
|
|
||||||
Back: A finite set.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643247-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. How does $F$ relate to $Q$?
|
|
||||||
Back: $F \subseteq Q$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643252-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. How does $q_0$ relate to $Q$?
|
|
||||||
Back: $q_0 \in Q$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643257-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. How does $q_0$ relate to $F$?
|
|
||||||
Back: N/A.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643263-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M$. How many start states does $M$ have?
|
|
||||||
Back: One.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643267-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M$. How many accept states does $M$ have?
|
|
||||||
Back: Zero or more.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643272-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M$. How is $M$'s start state denoted in a state diagram?
|
|
||||||
Back: With an arrow pointing to it from nowhere.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643277-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M$. How is $M$'s final states denoted in a state diagram?
|
|
||||||
Back: With double circles.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643282-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M$. How is $M$'s transition function denoted in a state diagram?
|
|
||||||
Back: As edges to and from states.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643286-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M$. How is $M$'s alphabet denoted in a state diagram?
|
|
||||||
Back: With symbols labeling each edge.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643291-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $Q$ evaluate to?
|
|
||||||
![[state-diagram.png]]
|
|
||||||
Back: $Q = \{q_1, q_2, q_3\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643296-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $\Sigma$ evaluate to?
|
|
||||||
![[state-diagram.png]]
|
|
||||||
Back: $\Sigma = \{0, 1\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643301-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $q_0$ evaluate to?
|
|
||||||
![[state-diagram.png]]
|
|
||||||
Back: $q_0 = q_1$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643305-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
|
||||||
![[state-diagram.png]]
|
|
||||||
Back: $\{q_1, q_2, q_3\} \times \{0, 1\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643309-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
|
||||||
![[state-diagram.png]]
|
|
||||||
Back: $\{q_1, q_2, q_3\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643313-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $F$ evaluate to?
|
|
||||||
![[state-diagram.png]]
|
|
||||||
Back: $F = \{q_2\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643317-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What name is given to a finite automaton's standard graphical depiction?
|
|
||||||
Back: Its state diagram.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643321-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
{1:Edges} are to {2:graphs} whereas {2:transitions} are to {1:state diagrams}.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643325-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
{1:Vertices} are to {2:graphs} whereas {2:states} are to {1:state diagrams}.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643328-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
The {final} states of a finite automaton are also called the {accept} states.
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643332-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
If $s$ is processed by machine $M$ such that $M$ finishes in an accept state, we say $M$ **accepts** $s$. Otherwise $M$ **rejects** $s$. If $A$ is the set of all strings that $M$ accepts, we say that $A$ is the **language of machine $M$**, denoted $L(M) = A$. We say that $M$ **recognizes** $A$.
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What does it mean for finite automaton $M$ to accept string $s$?
|
What does it mean for finite automaton $M$ to accept string $s$?
|
||||||
|
@ -349,138 +96,12 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Suppoe finite automaton $M$ does not accept any strings. What language does it recognize?
|
Suppose finite automaton $M$ does not accept any strings. What language does it recognize?
|
||||||
Back: $\varnothing$
|
Back: $\varnothing$
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
<!--ID: 1734999643385-->
|
<!--ID: 1734999643385-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $Q$ evaluate to?
|
|
||||||
![[state-diagram-ends1.png]]
|
|
||||||
Back: $Q = \{q_1, q_2\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643390-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\Sigma$ evaluate to?
|
|
||||||
![[state-diagram-ends1.png]]
|
|
||||||
Back: $\Sigma = \{0, 1\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643396-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $F$ evaluate to?
|
|
||||||
![[state-diagram-ends1.png]]
|
|
||||||
Back: $F = \{q_2\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643402-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $q_0$ evaluate to?
|
|
||||||
![[state-diagram-ends1.png]]
|
|
||||||
Back: $q_0 = q_1$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643408-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
|
||||||
![[state-diagram-ends1.png]]
|
|
||||||
Back: $\{q_1, q_2\} \times \{0, 1\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643415-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
|
||||||
![[state-diagram-ends1.png]]
|
|
||||||
Back: $\{q_1, q_2\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643420-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $L(M)$ evaluate to?
|
|
||||||
![[state-diagram-ends1.png]]
|
|
||||||
Back: $\{w \mid w \text{ ends with a } 1 \}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643424-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $Q$ evaluate to?
|
|
||||||
![[state-diagram-ends0.png]]
|
|
||||||
Back: $Q = \{q_1, q_2\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643428-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\Sigma$ evaluate to?
|
|
||||||
![[state-diagram-ends0.png]]
|
|
||||||
Back: $\Sigma = \{0, 1\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643433-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $F$ evaluate to?
|
|
||||||
![[state-diagram-ends0.png]]
|
|
||||||
Back: $F = \{q_1\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643440-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $q_0$ evaluate to?
|
|
||||||
![[state-diagram-ends0.png]]
|
|
||||||
Back: $q_0 = q_1$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643445-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
|
||||||
![[state-diagram-ends0.png]]
|
|
||||||
Back: $\{q_1, q_2\} \times \{0, 1\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643450-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
|
||||||
![[state-diagram-ends0.png]]
|
|
||||||
Back: $\{q_1, q_2\}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643455-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $L(M)$ evaluate to?
|
|
||||||
![[state-diagram-ends0.png]]
|
|
||||||
Back: $\{w \mid w = \epsilon \lor w \text{ ends with a } 0 \}$
|
|
||||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
||||||
<!--ID: 1734999643459-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What is a regular language?
|
What is a regular language?
|
||||||
|
@ -504,6 +125,405 @@ Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third ed
|
||||||
<!--ID: 1735160593029-->
|
<!--ID: 1735160593029-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
## Determinism
|
||||||
|
|
||||||
|
A **deterministic finite automaton** (DFA) is a $5$-tuple $\langle Q, \Sigma, \delta, q_0, F \rangle$, where
|
||||||
|
|
||||||
|
1. $Q$ is a finite set called the **states**;
|
||||||
|
2. $\Sigma$ is a finite set called the alphabet;
|
||||||
|
3. $\delta \colon Q \times \Sigma \rightarrow Q$ is the **transition function**;
|
||||||
|
4. $q_0 \in Q$ is the **start state**; and
|
||||||
|
5. $F \subseteq Q$ is the set of **final states**.
|
||||||
|
|
||||||
|
These automaton are typically denoted using a **state diagram** like below. The start state is indicated by an arrow pointing at it from nowhere. An accept state is denoted with a double circle.
|
||||||
|
|
||||||
|
![[dfa-example.png]]
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A deterministic finite automaton is defined as a tuple of how many components?
|
||||||
|
Back: Five.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643206-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is DFA an acronym for?
|
||||||
|
Back: **D**eterministic **f**inite **a**utomata.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1736721887614-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What kind of mathematical entity is $Q$?
|
||||||
|
Back: A finite set of states.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643211-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What name is given to $Q$?
|
||||||
|
Back: $M$'s states.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643215-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What is $\Sigma$?
|
||||||
|
Back: An alphabet.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643218-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What kind of mathematical entity is $\delta$?
|
||||||
|
Back: A function.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643221-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What name is given to $\delta$?
|
||||||
|
Back: $M$'s transition function.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643224-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What is $\delta$'s domain?
|
||||||
|
Back: $Q \times \Sigma$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643227-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What is $\delta$'s codomain?
|
||||||
|
Back: $Q$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643230-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What kind of mathematical entity is $q_0$?
|
||||||
|
Back: An urelement.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643233-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What name is given to $q_0$?
|
||||||
|
Back: $M$'s start state.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643238-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What name is given to $F$?
|
||||||
|
Back: $M$'s final states.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643242-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What kind of mathematical entity is $F$?
|
||||||
|
Back: A finite set.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643247-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. How does $F$ relate to $Q$?
|
||||||
|
Back: $F \subseteq Q$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643252-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. How does $q_0$ relate to $Q$?
|
||||||
|
Back: $q_0 \in Q$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643257-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. How does $q_0$ relate to $F$?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643263-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M$ be a DFA. How many start states does $M$ have?
|
||||||
|
Back: One.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643267-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M$ be a DFA. How many accept states does $M$ have?
|
||||||
|
Back: Zero or more.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643272-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M$ be a DFA. How is $M$'s start state denoted in a state diagram?
|
||||||
|
Back: With an arrow pointing to it from nowhere.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643277-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M$ be a DFA. How is $M$'s final states denoted in a state diagram?
|
||||||
|
Back: With double circles.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643282-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M$ be a DFA. How is $M$'s transition function denoted in a state diagram?
|
||||||
|
Back: As edges to and from states.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643286-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M$ be a DFA. How is $M$'s alphabet denoted in a state diagram?
|
||||||
|
Back: With symbols labeling each edge.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643291-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $Q$ evaluate to?
|
||||||
|
![[dfa-example.png]]
|
||||||
|
Back: $Q = \{q_1, q_2, q_3\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643296-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\Sigma$ evaluate to?
|
||||||
|
![[dfa-example.png]]
|
||||||
|
Back: $\Sigma = \{0, 1\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643301-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $q_0$ evaluate to?
|
||||||
|
![[dfa-example.png]]
|
||||||
|
Back: $q_0 = q_1$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643305-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
||||||
|
![[dfa-example.png]]
|
||||||
|
Back: $\{q_1, q_2, q_3\} \times \{0, 1\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643309-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
||||||
|
![[dfa-example.png]]
|
||||||
|
Back: $\{q_1, q_2, q_3\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643313-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $F$ evaluate to?
|
||||||
|
![[dfa-example.png]]
|
||||||
|
Back: $F = \{q_2\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643317-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What name is given to a DFA's standard graphical depiction?
|
||||||
|
Back: Its state diagram.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643321-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
{1:Edges} are to {2:graphs} whereas {2:transitions} are to {1:state diagrams}.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643325-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
{1:Vertices} are to {2:graphs} whereas {2:states} are to {1:state diagrams}.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643328-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
The {final} states of a DFA are also called the {accept} states.
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643332-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $Q$ evaluate to?
|
||||||
|
![[dfa-ends1.png]]
|
||||||
|
Back: $Q = \{q_1, q_2\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643390-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\Sigma$ evaluate to?
|
||||||
|
![[dfa-ends1.png]]
|
||||||
|
Back: $\Sigma = \{0, 1\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643396-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $F$ evaluate to?
|
||||||
|
![[dfa-ends1.png]]
|
||||||
|
Back: $F = \{q_2\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643402-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $q_0$ evaluate to?
|
||||||
|
![[dfa-ends1.png]]
|
||||||
|
Back: $q_0 = q_1$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643408-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
||||||
|
![[dfa-ends1.png]]
|
||||||
|
Back: $\{q_1, q_2\} \times \{0, 1\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643415-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
||||||
|
![[dfa-ends1.png]]
|
||||||
|
Back: $\{q_1, q_2\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643420-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $L(M)$ evaluate to?
|
||||||
|
![[dfa-ends1.png]]
|
||||||
|
Back: $\{w \mid w \text{ ends with a } 1 \}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643424-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $Q$ evaluate to?
|
||||||
|
![[dfa-ends0.png]]
|
||||||
|
Back: $Q = \{q_1, q_2\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643428-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\Sigma$ evaluate to?
|
||||||
|
![[dfa-ends0.png]]
|
||||||
|
Back: $\Sigma = \{0, 1\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643433-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $F$ evaluate to?
|
||||||
|
![[dfa-ends0.png]]
|
||||||
|
Back: $F = \{q_1\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643440-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $q_0$ evaluate to?
|
||||||
|
![[dfa-ends0.png]]
|
||||||
|
Back: $q_0 = q_1$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643445-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
||||||
|
![[dfa-ends0.png]]
|
||||||
|
Back: $\{q_1, q_2\} \times \{0, 1\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643450-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
||||||
|
![[dfa-ends0.png]]
|
||||||
|
Back: $\{q_1, q_2\}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643455-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be the depicted DFA. What does $L(M)$ evaluate to?
|
||||||
|
![[dfa-ends0.png]]
|
||||||
|
Back: $\{w \mid w = \epsilon \lor w \text{ ends with a } 0 \}$
|
||||||
|
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||||
|
<!--ID: 1734999643459-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Regular Operations
|
## Regular Operations
|
||||||
|
|
||||||
Let $A$ and $B$ be languages. Then the **regular operations** union, intersection, concatenation, and Kleene star are defined as:
|
Let $A$ and $B$ be languages. Then the **regular operations** union, intersection, concatenation, and Kleene star are defined as:
|
||||||
|
|
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 26 KiB |
|
@ -602,7 +602,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Linking fails at symbol resolution if what set(s) are nonempty?
|
Linking fails at symbol resolution if what set(s) are nonempty?
|
||||||
Back: Either the set of unresolved symbols or relocatable object files.
|
Back: The set of unresolved symbols.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
<!--ID: 1736632025912-->
|
<!--ID: 1736632025912-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -620,7 +620,7 @@ Basic
|
||||||
Let `p.o` depends on `libx.a`. What minimal command lets `cc` resolve all symbol references?
|
Let `p.o` depends on `libx.a`. What minimal command lets `cc` resolve all symbol references?
|
||||||
Back:
|
Back:
|
||||||
```bash
|
```bash
|
||||||
$ cc p.o -x
|
$ cc p.o -lx
|
||||||
```
|
```
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
<!--ID: 1736632025920-->
|
<!--ID: 1736632025920-->
|
||||||
|
@ -631,7 +631,7 @@ Basic
|
||||||
Let `p.o` depends on `liby.a` which depends on `libx.a` . What minimal command lets `cc` resolve all symbol references?
|
Let `p.o` depends on `liby.a` which depends on `libx.a` . What minimal command lets `cc` resolve all symbol references?
|
||||||
Back:
|
Back:
|
||||||
```bash
|
```bash
|
||||||
$ cc p.o -y -x
|
$ cc p.o -ly -lx
|
||||||
```
|
```
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
<!--ID: 1736632025924-->
|
<!--ID: 1736632025924-->
|
||||||
|
|
|
@ -59,7 +59,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What "form" of reification does the following sentence take on? $$\text{Wikipedia says Shakespeare wrote Hamlet.}$$
|
What "form(s)" of reification does the following sentence take on? $$\text{Wikipedia says Shakespeare wrote Hamlet.}$$
|
||||||
Back: Provenance.
|
Back: Provenance.
|
||||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||||
<!--ID: 1734385502435-->
|
<!--ID: 1734385502435-->
|
||||||
|
@ -75,7 +75,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What "form" of reification does the following sentence take on? $$\text{It is 90\% probable that Shakespeare wrote Hamlet.}$$
|
What "form(s)" of reification does the following sentence take on? $$\text{It is 90\% probable that Shakespeare wrote Hamlet.}$$
|
||||||
Back: Likelihood.
|
Back: Likelihood.
|
||||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||||
<!--ID: 1734385502443-->
|
<!--ID: 1734385502443-->
|
||||||
|
@ -91,7 +91,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What "form" of reification does the following sentence take on? $$\text{Kenneth Branagh played Hamlet in the movie.}$$
|
What "form(s)" of reification does the following sentence take on? $$\text{Kenneth Branagh played Hamlet in the movie.}$$
|
||||||
Back: Context.
|
Back: Context.
|
||||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||||
<!--ID: 1734385502453-->
|
<!--ID: 1734385502453-->
|
||||||
|
@ -107,7 +107,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What "form" of reification does the following sentence take on? $$\text{Hamlet plays on Broadway Jan. 11th through Mar. 12th.}$$
|
What "form(s)" of reification does the following sentence take on? $$\text{Hamlet plays on Broadway Jan. 11th through Mar. 12th.}$$
|
||||||
Back: Time frame.
|
Back: Time frame.
|
||||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||||
<!--ID: 1734385502463-->
|
<!--ID: 1734385502463-->
|
||||||
|
|
|
@ -493,14 +493,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1733407760105-->
|
<!--ID: 1733407760105-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
According to Enderton, what is the "essential demand" for defining cardinal numbers?
|
|
||||||
Back: Defining cardinal numbers such that for any sets $A$ and $B$, $\mathop{\text{card}} A = \mathop{\text{card}} B$ iff $A \approx B$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1733407760108-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What name is given to $\mathop{\text{card}} \omega$?
|
What name is given to $\mathop{\text{card}} \omega$?
|
||||||
|
@ -726,7 +718,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K$ and $L$ be disjoint sets. What does $\mathop{\text{card}}(K \cup L)$ evaluate to?
|
Let $K$ and $L$ be disjoint sets. What does $\mathop{\text{card}}(K \cup L)$ evaluate to?
|
||||||
Back: As $\kappa + \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
Back: $\mathop{\text{card}}K + \mathop{\text{card}}L$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439142-->
|
<!--ID: 1733710439142-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -873,14 +865,14 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K$ and $L$ be sets. What does $\mathop{\text{card}}(K \times L)$ evaluate to?
|
Let $K$ and $L$ be sets. What does $\mathop{\text{card}}(K \times L)$ evaluate to?
|
||||||
Back: As $\kappa \cdot \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
Back: $\mathop{\text{card}}K \cdot \mathop{\text{card}}L$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439156-->
|
<!--ID: 1733710439156-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K \approx \kappa$ and $L \approx \lambda$. What is necessary for $\mathop{\text{card}}(K \times L) \approx \kappa \cdot \lambda$?
|
Let $\mathop{\text{card}}K = \kappa$ and $\mathop{\text{card}}L = \lambda$. What is necessary for $\mathop{\text{card}}(K \times L) = \kappa \cdot \lambda$?
|
||||||
Back: N/A. This is true by definition.
|
Back: N/A. This is true by definition.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439159-->
|
<!--ID: 1733710439159-->
|
||||||
|
@ -1067,7 +1059,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K$ and $L$ be sets. What does $\mathop{\text{card}}(^LK)$ evaluate to?
|
Let $K$ and $L$ be sets. What does $\mathop{\text{card}}(^LK)$ evaluate to?
|
||||||
Back: As $\kappa^\lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
Back: To $\kappa^\lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439168-->
|
<!--ID: 1733710439168-->
|
||||||
END%%
|
END%%
|
||||||
|
|
Loading…
Reference in New Issue