Archimedean property and natural numbers.
parent
a35309911d
commit
f08d90bed4
|
@ -195,7 +195,9 @@
|
|||
"ordered-rooted-tree-cmp.png",
|
||||
"ordered-binary-tree-cmp.png",
|
||||
"lcrs-nodes.png",
|
||||
"binary-tree-nodes.png"
|
||||
"binary-tree-nodes.png",
|
||||
"archimedean-property.png",
|
||||
"infinite-cartesian-product.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -308,7 +310,7 @@
|
|||
"_journal/2024-02-23.md": "219ce9ad15a8733edd476c97628b71fd",
|
||||
"_journal/2024-02/2024-02-22.md": "312e55d57868026f6e80f7989a889c2b",
|
||||
"c17/strings.md": "2da50edd26eae35c81f70e65bbd12d49",
|
||||
"c17/index.md": "c96078cda31616017b0a6036ac87e60b",
|
||||
"c17/index.md": "fd48bc8d8b9b28702e8fdf0f4cf977d5",
|
||||
"c17/escape-sequences.md": "a8b99070336878b4e8c11e9e4525a500",
|
||||
"c17/declarations.md": "2b61706906d8ae935e0b56e962ad2fa8",
|
||||
"algorithms/sorting/merge-sort.md": "6506483f7df6507cee0407bd205dbedd",
|
||||
|
@ -375,7 +377,7 @@
|
|||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
"set/index.md": "c103501e345a1b8201a26f2e83ed8379",
|
||||
"set/index.md": "91060cf5e604f7683a34710dda2ea10b",
|
||||
"set/graphs.md": "6f08a3e8e4896b0325aef6c452bfbb56",
|
||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||
|
@ -498,11 +500,11 @@
|
|||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||
"git/remotes.md": "cbe2cd867f675f156e7fe71ec615890d",
|
||||
"programming/pred-trans.md": "3c112418e7aa0970a9c38216a65b0932",
|
||||
"programming/pred-trans.md": "c02471c6c9728dd19f8df7bc180ef8b1",
|
||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"x86-64/registers.md": "e55217fb711495490546975a7828e8f1",
|
||||
"x86-64/registers.md": "5cb49ae47fb0f95df6e15991274f4ad3",
|
||||
"_journal/2024-05-15.md": "4e6a7e6df32e93f0d8a56bc76613d908",
|
||||
"_journal/2024-05/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05-16.md": "580c7ec61ec56be92fa8d6affcf0a5f6",
|
||||
|
@ -536,7 +538,7 @@
|
|||
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
|
||||
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
|
||||
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
||||
"algebra/set.md": "97ee8ac4f147ed64496b8a757265d1d9",
|
||||
"algebra/set.md": "a89ada021de83240724adb70490e3472",
|
||||
"algebra/boolean.md": "fc47edb7d0080b73ce1ce0d3e0e16d7d",
|
||||
"git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb",
|
||||
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
|
||||
|
@ -737,7 +739,7 @@
|
|||
"_journal/2024-08/2024-08-10.md": "08e7ea4a78c46645b93ec51e2372d04f",
|
||||
"_journal/2024-08-12.md": "8a37a2d1381f9d9e29d83031bad80dd0",
|
||||
"_journal/2024-08/2024-08-11.md": "acc91e07b43590e90846d2c936dcb3d5",
|
||||
"c17/types.md": "5ff85d535ee99d3e7aa79da93eb8383c",
|
||||
"c17/types.md": "069d0f7a38f5ae817945d5b6937dc1ec",
|
||||
"_journal/2024-08-14.md": "800650b9fa2f4445a174e0a547c2fa95",
|
||||
"_journal/2024-08/2024-08-13.md": "8b64225b06d1164a91176b123a3513a2",
|
||||
"_journal/2024-08/2024-08-12.md": "e57b03b929410f3111c894e43e1728ec",
|
||||
|
@ -747,15 +749,27 @@
|
|||
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
||||
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||
"_journal/2024-08/2024-08-16.md": "096d9147a9e3e7a947558f8dec763a2c",
|
||||
"set/order.md": "49fcebf2e20a6f73571fea5ff09f0753",
|
||||
"set/order.md": "66581eb2d882569b1591e660601caa55",
|
||||
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
||||
"_journal/2024-08-19.md": "82d3bfa01b4187a56a418f6e33bd10b3",
|
||||
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||
"_journal/2024-08/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||
"_journal/2024-08/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||
"calculus/bounds.md": "4add5fb7591087d0b3383c53dc62e365",
|
||||
"calculus/index.md": "5ee4d950533ae330ca5ef9e113fe87f3",
|
||||
"x86-64/instructions/conditions.md": "c5571deac40ac2eeb8666f2d3b3c278e"
|
||||
"x86-64/instructions/conditions.md": "c5571deac40ac2eeb8666f2d3b3c278e",
|
||||
"_journal/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
"algebra/arch-prop.md": "eccdd685f12898ed8679b558d19dc20a",
|
||||
"_journal/2024-08/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||
"_journal/2024-08-21.md": "59e9483143ba6beec4f9ae2a09eb90a8",
|
||||
"_journal/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
|
||||
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
|
||||
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
|
||||
"set/natural-numbers.md": "97ca466daf1173ed8973db1d1a1935cc",
|
||||
"_journal/2024-08-24.md": "9172485a4d1c47b5a181b96b68eb3ebc",
|
||||
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
|
||||
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-08-24"
|
||||
---
|
||||
|
||||
- [ ] Anki Flashcards
|
||||
- [ ] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Began notes on [[natural-numbers|natural numbers]].
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-08-20"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Add flashcards on the [[arch-prop|Archimedean property]] of reals.
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-08-21"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-08-22"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Watched [Lecture 11 - Join Algorithms](https://www.youtube.com/watch?v=yFk_GfaY2Hk&list=PLSE8ODhjZXjaKScG3l0nuOiDTTqpfnWFf).
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-08-23"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,98 @@
|
|||
---
|
||||
title: Archimedean Property
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algebra::archimedean
|
||||
tags:
|
||||
- algebra
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
If $x, y \in \mathbb{R}^+$, then there exists a positive integer $n$ such that $nx > y$. This fundamental property usually follows from the [[bounds#Completeness Axiom|completeness axiom]].
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the Archimedean property of the reals state?
|
||||
Back: If $x, y \in \mathbb{R}^+$, then there exists a positive integer $n$ such that $nx > y$.
|
||||
Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
|
||||
<!--ID: 1724155425457-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the Archimedean property of the reals geometrically interpreted?
|
||||
Back: Any finite-length line segment can be covered by a finite number of line segments of some positive length.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724155425465-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The Archimedean property of the reals posits the existence of what mathematical entity?
|
||||
Back: A positive integer.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724155425470-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given positive reals $x$ and $y$, what does the Archimedean property conclude?
|
||||
Back: There exists a positive integer $n$ such that $nx > y$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724155425481-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given reals $x$ and $y$, what does the Archimedean property conclude?
|
||||
Back: Indeterminate. We expect $x$ and $y$ to be positive reals.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724155425487-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which property is roughly described as "the reals have no infinitely large element?"
|
||||
Back: The Archimedean property of the reals.
|
||||
Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
|
||||
<!--ID: 1724155425492-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which property of the reals is depicted in the following?
|
||||
![[archimedean-property.png]]
|
||||
Back: The Archimedean property.
|
||||
Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
|
||||
<!--ID: 1724155425498-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the following diagram stated analytically?
|
||||
![[archimedean-property.png]]
|
||||
Back: For any $A, B \in \mathbb{R}^+$, there exists a positive integer $n$ such that $nA > B$.
|
||||
Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
|
||||
<!--ID: 1724155425503-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What mathematical entities are assumed to exist in the formulate of the Archimedean property of the reals?
|
||||
Back: Two positive real numbers.
|
||||
Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
|
||||
<!--ID: 1724155425509-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What axiom of the real-number system is used to prove its Archimedean property?
|
||||
Back: The least upper bound axiom (i.e. the completeness axiom).
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724155536942-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
|
||||
* Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
|
@ -1081,14 +1081,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1720782833233-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For any function $F \colon A \rightarrow B$, $F$ is a member of what other set?
|
||||
Back: $\mathscr{P}(A \times B)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782833236-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For sets $A$ and $B$, how is set $B^A$ pronounced?
|
||||
|
|
|
@ -15,7 +15,7 @@ This quote describes C's **abstract state machine**. Whatever instructions a C p
|
|||
%%ANKI
|
||||
Basic
|
||||
What feature of C's abstract state machine makes C performant?
|
||||
Back: It enables optimization.
|
||||
Back: The ability to optimize.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1723856661330-->
|
||||
END%%
|
||||
|
|
|
@ -27,7 +27,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Why are narrow types named the way they are?
|
||||
Back: They are considered to small to be used directly in arithmetic expressions.
|
||||
Back: They are considered too small to be used directly in arithmetic expressions.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1723859121959-->
|
||||
END%%
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 3.3 KiB |
|
@ -979,7 +979,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
When are both of the following guarded commands executed? $$\begin{align*} \textbf{if } & x \geq 0 \rightarrow z \coloneqq x \\ \textbf{ | } & x \leq 0 \rightarrow z \coloneqq -x \\ \textbf{fi } & \end{align*}$$
|
||||
Back: N/A.
|
||||
Back: N/A. Only one guard is executed.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1722257348960-->
|
||||
END%%
|
||||
|
|
|
@ -1115,6 +1115,33 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1720964209648-->
|
||||
END%%
|
||||
|
||||
## Infinity Axiom
|
||||
|
||||
There exists an [[natural-numbers#Inductive Sets|inductive]] set: $$\exists A, [\varnothing \in A \land (\forall a \in A, a^+ \in A)]$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the infinity axiom state?
|
||||
Back: There exists an inductive set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269578-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {infinity axiom} asserts the existence of an {inductive set}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269581-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
State the infinity axiom in FOL.
|
||||
Back: $\exists A, [\varnothing \in A \land (\forall a \in A, a^+ \in A)]$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269585-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
|
||||
|
|
|
@ -0,0 +1,286 @@
|
|||
---
|
||||
title: Natural Numbers
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: set::nat
|
||||
tags:
|
||||
- natural-number
|
||||
- set
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The standard way of representing the natural numbers is as follows:
|
||||
|
||||
* $0 = \varnothing$
|
||||
* $1 = \{0\} = \{\varnothing\}$
|
||||
* $2 = \{0, 1\} = \{\varnothing, \{\varnothing\}\}$
|
||||
* $\ldots$
|
||||
|
||||
That is, each natural number corresponds to the set of natural numbers smaller than it.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the number $0$ represented as a set?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233219-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the number $1$ represented as a set?
|
||||
Back: $\{0\} = \{\varnothing\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233247-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the number $2$ represented as a set?
|
||||
Back: $\{0, 1\} = \{\varnothing, \{\varnothing\}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233252-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Who came up with the standard set representation of natural numbers?
|
||||
Back: John von Neumann.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233257-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the set representation of $n \in \mathbb{N}$. How many members does $n$ have?
|
||||
Back: $n$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233263-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the set representation of $n \in \mathbb{N}$. What are the members of $n$?
|
||||
Back: $0$, $1$, $\ldots$, $n - 1$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233269-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $n \in \mathbb{N}$. *Why* is $n \in n + 1$?
|
||||
Back: $n + 1$ is a set containing all preceding natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233274-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $n \in \mathbb{N}$. *Why* is $n \subseteq n + 1$?
|
||||
Back: $n$ and $n + 1$ are sets containing all their preceding natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233279-->
|
||||
END%%
|
||||
|
||||
## Inductive Sets
|
||||
|
||||
For any set $a$, its **successor** $a^+$ is defined as $$a^+ = a \cup \{a\}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the successor of a set $a$ denoted?
|
||||
Back: $a^+$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233287-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the successor of a set $a$ defined?
|
||||
Back: As $a^+ = a \cup \{a\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233291-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Set $\{a, b\}^+$ equals what other set?
|
||||
Back: $\{a, b, \{a, b\}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233295-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Set $\{a\}^+$ equals what other set?
|
||||
Back: $\{a, \{a\}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233299-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Set $\{a, \{a, b\}, \{a, b, c\}\}$ can be written as the successor of what set?
|
||||
Back: N/A.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485516768-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Set $\{a, b, \{a, b\}\}$ can be written as the successor of what set?
|
||||
Back: $\{a, b\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485516774-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Set $\{a, \{a, b\}\}$ can be written as the successor of what set?
|
||||
Back: N/A.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485516777-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Set $\{a, \{a, b\}, \{a, \{a, b\}\}\}$ can be written as the successor of what set?
|
||||
Back: $\{a, \{a, b\}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485516780-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $n \in \mathbb{N}$ then $n \in n + 1$. What analagous statement holds for arbitrary set $a$?
|
||||
Back: $a \in a^+$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233303-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $n \in \mathbb{N}$ then $n \subseteq n + 1$. What analagous statement holds for arbitrary set $a$?
|
||||
Back: $a \subseteq a^+$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724485233283-->
|
||||
END%%
|
||||
|
||||
A set $A$ is **inductive** if and only if $\varnothing \in A$ and $\forall a \in A, a^+ \in A$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a set $A$ to be closed under successor?
|
||||
Back: If $a \in A$, then $a^+ \in A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269548-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write "set $B$ is closed under successor" in FOL.
|
||||
Back: $\forall b \in B, b^+ \in B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269552-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a set $A$ to be inductive?
|
||||
Back: $\varnothing \in A$ and $A$ is closed under successor.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269555-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A set $A$ is inductive iff {$\varnothing \in A$} and {$A$ is closed under successor}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269558-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
An inductive set is closed under what operation?
|
||||
Back: Successor.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269562-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set is the "seed" of an inductive set?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269565-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $a \in A$ where $A$ is an inductive set. What other members must belong to $A$?
|
||||
Back: $a^+$, $a^{++}$, $\ldots$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269568-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What natural number corresponds to $\varnothing^{+++}$?
|
||||
Back: $3$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269571-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What natural number corresponds to $\varnothing$?
|
||||
Back: $0$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486269575-->
|
||||
END%%
|
||||
|
||||
A **natural number** is a set that belongs to every inductive set.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is a natural number *defined* in set theory?
|
||||
Back: As a set belonging to every inductive set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486756997-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What greek letter is used to denote the set of natural numbers?
|
||||
Back: $\omega$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486757001-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the smallest inductive set?
|
||||
Back: $\omega$, i.e. the set of natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486757004-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How might $\omega$ be defined as an intersection of classes?
|
||||
Back: $\omega = \bigcap\,\{A \mid A \text{ is inductive}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486757007-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $n \in \omega$. What other sets *must* $n$ be a member of?
|
||||
Back: Every other inductive set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486757010-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -89,7 +89,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Operator {$\leq$} typically denote a {non-strict} preorder.
|
||||
Operator {$\leq$} typically denotes a {non-strict} preorder.
|
||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||
<!--ID: 1723924394146-->
|
||||
END%%
|
||||
|
@ -177,7 +177,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Operator {$<$} typically denote a {strict} preorder.
|
||||
Operator {$<$} typically denotes a {strict} preorder.
|
||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||
<!--ID: 1723924394151-->
|
||||
END%%
|
||||
|
@ -268,7 +268,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ a partial order on $\{a, b, c\}$?
|
||||
Back: N/A. It is.
|
||||
Back: It isn't reflexive on $\{b, c\}$.
|
||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||
<!--ID: 1723816108524-->
|
||||
END%%
|
||||
|
@ -276,7 +276,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ a partial order on $\{a, b, c\}$?
|
||||
Back: It isn't antisymmetric.
|
||||
Back: It isn't reflexive on $\{b, c\}$, it isn't antisymmetric, and it isn't transitive.
|
||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||
<!--ID: 1723816108531-->
|
||||
END%%
|
||||
|
@ -309,14 +309,14 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Operator {$<$} typically denote a {strict} partial order.
|
||||
Operator {$<$} typically denotes a {strict} partial order.
|
||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||
<!--ID: 1723902024378-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Operator {$\leq$} typically denote a {non-strict} partial order.
|
||||
Operator {$\leq$} typically denotes a {non-strict} partial order.
|
||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||
<!--ID: 1723902024382-->
|
||||
END%%
|
||||
|
@ -414,7 +414,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ an equivalence relation on $\{a, b\}$?
|
||||
Back: It isn't symmetric.
|
||||
Back: It is neither reflexive on $\{a, b\}$ nor symmetric.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1723816108538-->
|
||||
END%%
|
||||
|
@ -855,7 +855,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Operator {$\leq$} typically denote a {non-strict} total order.
|
||||
Operator {$\leq$} typically denotes a {non-strict} total order.
|
||||
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||
<!--ID: 1723923665325-->
|
||||
END%%
|
||||
|
@ -896,7 +896,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Operator {$<$} typically denote a {strict} total order.
|
||||
Operator {$<$} typically denotes a {strict} total order.
|
||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||
<!--ID: 1723923665330-->
|
||||
END%%
|
||||
|
@ -918,7 +918,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A {non-strict} total order satisfies {strong connectivity} whereas a {strict} total order satisfies {connectivity}.
|
||||
A {1:non-strict} total order satisfies {2:strong connectivity} whereas a {2:strict} total order satisfies {1:connectivity}.
|
||||
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||
<!--ID: 1723923665333-->
|
||||
END%%
|
||||
|
|
|
@ -238,35 +238,35 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Basic
|
||||
Which register should I use for an 2 byte return value?
|
||||
Back: `%ax`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1724119420103-->
|
||||
<!--ID: 1724417749880-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Basic
|
||||
Which register should I use for a 1 byte stack pointer?
|
||||
Back: `%spl`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1724119420106-->
|
||||
<!--ID: 1724417749885-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Basic
|
||||
Which register should I use for a 4 byte stack pointer?
|
||||
Back: `%esp`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1724119420109-->
|
||||
<!--ID: 1724417749890-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Basic
|
||||
Which register should I use for an 8 byte return value?
|
||||
Back: `%rax`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1724119420113-->
|
||||
<!--ID: 1724417749896-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
|
Loading…
Reference in New Issue