Add cards on propositional logic.

Joshua Potter 2024-02-03 14:15:12 -07:00
parent 7e28ba2efd
commit eca23f9927
3 changed files with 310 additions and 2 deletions
notes
.obsidian/plugins/obsidian-to-anki-plugin

View File

@ -68,11 +68,14 @@
"bash/index.md": "3b5296277f095acdf16655adcdf524af", "bash/index.md": "3b5296277f095acdf16655adcdf524af",
"bash/shebang.md": "ad178efeb4a05190b80b5df108c175c7", "bash/shebang.md": "ad178efeb4a05190b80b5df108c175c7",
"bash/robustness.md": "de97cd77aae047b5eea27440b43c9c42", "bash/robustness.md": "de97cd77aae047b5eea27440b43c9c42",
"journal/2024-02-01.md": "f4cc061bfc8e41ce15ae9a354c65ffe9", "journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb",
"journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970", "journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970",
"bash/quoting.md": "b1d8869a91001f8b22f0cdc54d806f61", "bash/quoting.md": "b1d8869a91001f8b22f0cdc54d806f61",
"nix/callPackage.md": "5ef6bc5d1a549c55d43ebb4d48c64427", "nix/callPackage.md": "5ef6bc5d1a549c55d43ebb4d48c64427",
"nix/index.md": "dd5ddd19e95d9bdbe020c68974d77a33" "nix/index.md": "dd5ddd19e95d9bdbe020c68974d77a33",
"logic/propositional.md": "2e79b758dd161cc377f18cd1fa845285",
"logic/index.md": "d41d8cd98f00b204e9800998ecf8427e",
"journal/2024-02-03.md": "1359532c63e14251da04181fb0873d66"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

0
notes/logic/index.md Normal file
View File

View File

@ -0,0 +1,305 @@
---
title: Propositional Logic
TARGET DECK: Obsidian::STEM
FILE TAGS: logic::0-order
tags:
- logic
- 0-order
---
## Overview
%%ANKI
Basic
Who is the author of "The Science of Programming"?
Back: David Gries
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861286-->
END%%
%%ANKI
Basic
What are the constant propositions?
Back: $T$ and $F$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861289-->
END%%
%%ANKI
Basic
What are the five propositional logical operators?
Back: $\neg$, $\land$, $\lor$, $\Rightarrow$, and $\Leftrightarrow$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861291-->
END%%
%%ANKI
Cloze
Gries replaces logical operator {$\Leftrightarrow$} in favor of {$=$}.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861295-->
END%%
%%ANKI
Basic
How does Lean define propositional equality?
Back: Expressions `a` and `b` are propositionally equal iff `a = b` is true.
Reference: Avigad, Jeremy. Theorem Proving in Lean, n.d.
Tags: lean
<!--ID: 1706994861298-->
END%%
%%ANKI
Basic
How does Lean define `propext`?
Back:
```lean
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
```
Reference: Avigad, Jeremy. Theorem Proving in Lean, n.d.
Tags: lean
<!--ID: 1706994861300-->
END%%
%%ANKI
Basic
What Lean theorem justifies Gries choice of $=$ over $\Leftrightarrow$?
Back: `propext`
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: lean
<!--ID: 1706994861302-->
END%%
%%ANKI
Basic
What name is given to $\land$ operands?
Back: Conjuncts
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861304-->
END%%
%%ANKI
Basic
What name is given to $\lor$ operands?
Back: Disjuncts
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861306-->
END%%
%%ANKI
Basic
What name is given to operand $a$ in $a \Rightarrow b$?
Back: The antecedent
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861308-->
END%%
%%ANKI
Basic
What name is given to operand $b$ in $a \Rightarrow b$?
Back: The consequent
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861310-->
END%%
%%ANKI
Basic
What does the evaluation model of propositional logic refer to?
Back: An interpretation of propositional logic that associates values to identifiers.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861312-->
END%%
%%ANKI
Basic
Evaluation model. What is a state?
Back: A function mapping identifiers to values.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861314-->
END%%
%%ANKI
Basic
What is necessary to determine if a proposition is well-defined?
Back: A state to evaluate against.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861316-->
END%%
%%ANKI
Basic
Is $(b \land c)$ well-defined in $\{(b, T), (c, F)\}$?
Back: Yes
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861318-->
END%%
%%ANKI
Basic
Is $(b \lor d)$ well-defined in $\{(b, T), (c, F)\}$?
Back: No
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861320-->
END%%
%%ANKI
Basic
Evaluation model. What does it mean for a proposition to be a tautology?
Back: A proposition is true in every state it is well-defined in.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861323-->
END%%
%%ANKI
Basic
What C operator corresponds to $\neg$?
Back: `!`
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861325-->
END%%
%%ANKI
Basic
What C operator corresponds to $\land$?
Back: There isn't one.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861327-->
END%%
%%ANKI
Basic
What C operator corresponds to $\lor$?
Back: There isn't one.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861329-->
END%%
%%ANKI
Basic
What C operator corresponds to $\Rightarrow$?
Back: There isn't one.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861331-->
END%%
%%ANKI
Basic
What C operator corresponds to $\Leftrightarrow$?
Back: `=`
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861333-->
END%%
%%ANKI
Basic
Evaluation model. What does a proposition *represent*?
Back: The set of states in which it is true.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861335-->
END%%
%%ANKI
Basic
Evaluation model. What proposition represents states $\{(b, T)\}$ and $\{(c, F)\}$?
Back: $b \lor \neg c$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861337-->
END%%
%%ANKI
Basic
Evaluation model. What set of states does $a \land b$ represent?
Back: The set containing just state $\{(a, T), (b, T)\}$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861339-->
END%%
%%ANKI
Basic
Evaluation model. What is sloppy about phrase "the states in $b \lor \neg c$"?
Back: $b \lor \neg c$ is not a set.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861341-->
END%%
%%ANKI
Basic
When is $p$ stronger than $q$?
Back: When $p \Rightarrow q$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861343-->
END%%
%%ANKI
Basic
When is $p$ weaker than $q$?
Back: When $q \Rightarrow p$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861346-->
END%%
%%ANKI
Basic
What is the weakest proposition?
Back: $T$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861348-->
END%%
%%ANKI
Basic
What set of states does $T$ represent?
Back: The set of all states.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861350-->
END%%
%%ANKI
Basic
What is the strongest proposition?
Back: $F$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861352-->
END%%
%%ANKI
Basic
What set of states does $F$ represent?
Back: The set of no states.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861354-->
END%%
%%ANKI
Basic
Evaluation model. Why is $b \land c$ stronger than $b \lor c$?
Back: The former represents a subset of the states the latter represents.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861356-->
END%%
%%ANKI
Basic
How is $\Rightarrow$ written in terms of other logical operators?
Back: $p \Rightarrow q$ is equivalent to $\neg p \lor q$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861358-->
END%%
%%ANKI
Basic
How is $\Leftrightarrow$ written in terms of other logical operators?
Back: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861360-->
END%%
## References
* Avigad, Jeremy. Theorem Proving in Lean, n.d.
* Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.