Additional lambda calculus notes.
parent
6b26e89d3c
commit
e87168b297
|
@ -179,7 +179,7 @@
|
||||||
"algorithms/running-time.md": "5efc0791097d2c996f931c9046c95f65",
|
"algorithms/running-time.md": "5efc0791097d2c996f931c9046c95f65",
|
||||||
"algorithms/order-growth.md": "12bf6c10653912283921dcc46c7fa0f8",
|
"algorithms/order-growth.md": "12bf6c10653912283921dcc46c7fa0f8",
|
||||||
"_journal/2024-02-08.md": "19092bdfe378f31e2774f20d6afbfbac",
|
"_journal/2024-02-08.md": "19092bdfe378f31e2774f20d6afbfbac",
|
||||||
"algorithms/sorting/selection-sort.md": "4c63541e8a886f17e4dc2b24215fefe8",
|
"algorithms/sorting/selection-sort.md": "73415c44d6f4429f43c366078fd4bf98",
|
||||||
"algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97",
|
"algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97",
|
||||||
"binary/hexadecimal.md": "c3d485f1fd869fe600334ecbef7d5d70",
|
"binary/hexadecimal.md": "c3d485f1fd869fe600334ecbef7d5d70",
|
||||||
"binary/index.md": "9089c6f0e86a0727cd03984f51350de0",
|
"binary/index.md": "9089c6f0e86a0727cd03984f51350de0",
|
||||||
|
@ -313,7 +313,7 @@
|
||||||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||||
"set/index.md": "6677229fea638f06e473b47aee1cd57a",
|
"set/index.md": "87f04456ea94ca2d06514f98101fa39a",
|
||||||
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
||||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||||
|
@ -436,7 +436,7 @@
|
||||||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||||
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
||||||
"programming/pred-trans.md": "db73cc035e92cd019e7e6f79921e6c1e",
|
"programming/pred-trans.md": "c3039011d2ec6f968cd0c759cbc4b2e6",
|
||||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||||
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||||
|
@ -450,7 +450,7 @@
|
||||||
"_journal/2024-05-17.md": "fb880d68077b655ede36d994554f3aba",
|
"_journal/2024-05-17.md": "fb880d68077b655ede36d994554f3aba",
|
||||||
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c",
|
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c",
|
||||||
"_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
"_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
||||||
"hashing/direct-addressing.md": "7ffaa27c01130d21aa32cf3b1c407785",
|
"hashing/direct-addressing.md": "87d1052ac7eae3061d88d011432cb693",
|
||||||
"hashing/index.md": "c870cf66e0224db58315ac0ba43b9cb1",
|
"hashing/index.md": "c870cf66e0224db58315ac0ba43b9cb1",
|
||||||
"set/classes.md": "18a09731868070e0c24a42bf0f582619",
|
"set/classes.md": "18a09731868070e0c24a42bf0f582619",
|
||||||
"_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a",
|
"_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a",
|
||||||
|
@ -465,7 +465,13 @@
|
||||||
"set/algebra.md": "a6877ceca952c417b52ea637716addbf",
|
"set/algebra.md": "a6877ceca952c417b52ea637716addbf",
|
||||||
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
|
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
|
||||||
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
|
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
|
||||||
"_journal/2024-05/2024-05-22.md": "5b4473b7c6483f3aa8727ad0a12f0408"
|
"_journal/2024-05/2024-05-22.md": "5b4473b7c6483f3aa8727ad0a12f0408",
|
||||||
|
"programming/lambda-calculus.md": "6930e7031babe1fb5a2dec9cc3bedcac",
|
||||||
|
"_journal/2024-05-25.md": "04e8e1cf4bfdbfb286effed40b09c900",
|
||||||
|
"_journal/2024-05/2024-05-24.md": "86132f18c7a27ebc7a3e4a07f4867858",
|
||||||
|
"_journal/2024-05/2024-05-23.md": "d0c98b484b1def3a9fd7262dcf2050ad",
|
||||||
|
"_journal/2024-05-26.md": "3b95f86726d646f157ebe2ae55e2afda",
|
||||||
|
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,11 @@
|
||||||
|
---
|
||||||
|
title: "2024-05-26"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Go (1 Life & Death Problem)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
|
* Additional foundational notes on $\lambda$-calculus (length, scope, bound variables, etc.).
|
|
@ -2,7 +2,7 @@
|
||||||
title: "2024-05-24"
|
title: "2024-05-24"
|
||||||
---
|
---
|
||||||
|
|
||||||
- [ ] Anki Flashcards
|
- [x] Anki Flashcards
|
||||||
- [x] KoL
|
- [x] KoL
|
||||||
- [ ] Sheet Music (10 min.)
|
- [ ] Sheet Music (10 min.)
|
||||||
- [ ] Go (1 Life & Death Problem)
|
- [ ] Go (1 Life & Death Problem)
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-05-25"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Go (1 Life & Death Problem)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -69,6 +69,14 @@ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (
|
||||||
<!--ID: 1707398773330-->
|
<!--ID: 1707398773330-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't `SELECTION_SORT` stable?
|
||||||
|
Back: The current element of an iteration is potentially swapped into an unstable position.
|
||||||
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
|
<!--ID: 1716632860458-->
|
||||||
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Is `SELECTION_SORT` adaptive?
|
Is `SELECTION_SORT` adaptive?
|
||||||
|
|
|
@ -108,7 +108,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
In what situation does direct addressing waste space?
|
In what situation does direct addressing waste space?
|
||||||
Back: When the number of keys used is much less than the size of the universe.
|
Back: When the number of keys used is less than the size of the universe.
|
||||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
<!--ID: 1716307180986-->
|
<!--ID: 1716307180986-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -10,9 +10,9 @@ tags:
|
||||||
|
|
||||||
Assume that there is given an infinite sequence of expressions called **variables** and a finite or infinite sequence of expressions called **atomic constants**, different from the variables. The set of expressions called $\lambda$-terms is defined inductively as follows:
|
Assume that there is given an infinite sequence of expressions called **variables** and a finite or infinite sequence of expressions called **atomic constants**, different from the variables. The set of expressions called $\lambda$-terms is defined inductively as follows:
|
||||||
|
|
||||||
* all variables and atomic constants are $\lambda$-terms (called **atoms**)
|
* all variables and atomic constants are $\lambda$-terms (called **atoms**);
|
||||||
* if $M$ and $N$ are $\lambda$-terms, then $(MN)$ is a $\lambda$-term (called **application**)
|
* if $M$ and $N$ are $\lambda$-terms, then $(MN)$ is a $\lambda$-term (called **application**);
|
||||||
* if $M$ is a $\lambda$-term and $x$ is a variable, then $(\lambda x. M)$ is a $\lambda$-term (called **abstraction**)
|
* if $M$ is a $\lambda$-term and $x$ is a variable, then $(\lambda x. M)$ is a $\lambda$-term (called **abstraction**).
|
||||||
|
|
||||||
If the sequence of atomic constants is empty, the system is called **pure**. Otherwise it is called **applied**.
|
If the sequence of atomic constants is empty, the system is called **pure**. Otherwise it is called **applied**.
|
||||||
|
|
||||||
|
@ -227,6 +227,390 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
|
||||||
<!--ID: 1716498992534-->
|
<!--ID: 1716498992534-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How are parentheses conventionally reintroduced to $\lambda$-term $MN$?
|
||||||
|
Back: $(MN)$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248092-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How are parentheses conventionally reintroduced to $\lambda$-term $MNPQ$?
|
||||||
|
Back: $(((MN)P)Q)$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248095-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How are parentheses conventionally reintroduced to $\lambda$-term $\lambda x. PQ$?
|
||||||
|
Back: $(\lambda x. (PQ))$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248096-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
$(MN)$ is interpreted as applying {1:$M$} to {1:$N$}.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248098-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
The length of a $\lambda$-term (denoted $lgh$) is equal to the number of atoms in the term:
|
||||||
|
|
||||||
|
* $lgh(a) = 1$ for all atoms $a$;
|
||||||
|
* $lgh(MN) = lgh(M) + lgh(N)$;
|
||||||
|
* $lgh(\lambda x. M) = 1 + lgh(M)$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the base case of the recursive definition of the "length of a $\lambda$-term"?
|
||||||
|
Back: $lgh(a) = 1$ for all atoms $a$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248100-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does the length of a $\lambda$-term measure?
|
||||||
|
Back: The number of atoms in the term.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248101-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
For atom $a$, what does $lgh(a)$ equal?
|
||||||
|
Back: $1$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248103-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the recursive definition of the "length of application"?
|
||||||
|
Back: For $\lambda$-terms $M$ and $N$, $lgh(MN) = lgh(M) + lgh(N)$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248104-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
For $\lambda$-terms $M$ and $N$, what does $lgh(MN)$ equal?
|
||||||
|
Back: $lgh(M) + lgh(N)$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248106-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the recursive definition of the "length of abstraction"?
|
||||||
|
Back: For $\lambda$-term $M$, $lgh(\lambda x. M) = 1 + lgh(M)$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248108-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
For $\lambda$-term $M$, what does $lgh(\lambda x. M)$ equal?
|
||||||
|
Back: $1 + lgh(M)$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248110-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does $lgh(x(\lambda y. yux))$ equal?
|
||||||
|
Back: $5$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248112-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
The phrase "{induction on $M$}" is shorthand for phrase "{induction on $lgh(M)$}".
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248113-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
For $\lambda$-terms $P$ and $Q$, the relation **$P$ occurs in $Q$** is defined by induction on $Q$ as:
|
||||||
|
|
||||||
|
* $P$ occurs in $P$;
|
||||||
|
* if $P$ occurs in $M$ or in $N$, then $P$ occurs in $(MN)$;
|
||||||
|
* if $P$ occurs in $M$ or $P$ is $x$, then $P$ occurs in $(\lambda x. M)$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the base case of recursive definition "$P$ occurs in $Q$"?
|
||||||
|
Back: $P$ occurs in $P$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248115-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What intuition does the "occurs in" relation aim to capture?
|
||||||
|
Back: Whether a $\lambda$-term appears somewhere in another $\lambda$-term.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248117-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
If $P$ occurs in {1:$M$} or {1:$N$}, then $P$ occurs in $(MN)$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248118-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
If $P$ occurs in {1:$M$} or $P$ {1:is $x$}, then $P$ occurs in $(\lambda x. M)$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248120-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is "occurs in" recursively defined for application?
|
||||||
|
Back: If $P$ occurs in $M$ or $N$, then $P$ occurs in $(MN)$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248122-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is "occurs in" recursively defined for abstraction?
|
||||||
|
Back: If $P$ occurs in $M$ or $P$ is $x$, then $P$ occurs in $(\lambda x. M)$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248124-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How many occurences of $x$ are in $((xy)(\lambda x. (xy)))$?
|
||||||
|
Back: Three.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248125-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What preprocessing step does Hindley et al. recommend when counting occurrences of $\lambda$-terms?
|
||||||
|
Back: Reintroduce parentheses in the top-level term.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716743248127-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
For a particular occurrence of $\lambda x. M$ in a term $P$, the occurrence of $M$ is called the **scope** of the occurrence of $\lambda x$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Given term $\lambda x. M$, the occurrence of {1:$M$} is called the {2:scope} of the occurrence of {1:$\lambda x$}.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745015997-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
The concept of scope is relevant to what kind of $\lambda$-term?
|
||||||
|
Back: Abstractions.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016000-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the scope of the leftmost $\lambda y$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$
|
||||||
|
Back: $yx(\lambda x. y(\lambda y. z)x))vw$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016002-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the scope of $\lambda x$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$
|
||||||
|
Back: $y(\lambda y. z)x$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016003-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the scope of the rightmost $\lambda y$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$
|
||||||
|
Back: $z$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016005-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is wrong with asking "what is the scope of $x$ in $\lambda$-term $P$"?
|
||||||
|
Back: We should be asking about a $\lambda x$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016007-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
An occurrence of a variable $x$ in a term $P$ is called
|
||||||
|
|
||||||
|
* **bound** if it is in the scope of a $\lambda x$ in $P$;
|
||||||
|
* **bound and binding** iff it is the $x$ in $\lambda x$;
|
||||||
|
* **free** otherwise.
|
||||||
|
|
||||||
|
$FV(P)$ denotes the set of all free variables of $P$. A **closed term** is a term without any free variables.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of $\lambda$-terms are considered bound or free?
|
||||||
|
Back: Variables.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016008-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is variable $x$ in term $P$ said to be "bound"?
|
||||||
|
Back: When it is in the scope of a $\lambda x$ in $P$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016009-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is variable $x$ in term $P$ said to be "bound and binding"?
|
||||||
|
Back: If and only if it is the $x$ in some occurrence of $\lambda x$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016011-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is variable $x$ in term $P$ said to be "free"?
|
||||||
|
Back: When it is not bound.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016012-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is variable $x$ in term $P$ said to be "free and binding"?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016014-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is variable $x$ in term $P$ said to be "bound" and "free"?
|
||||||
|
Back: When one occurrence is bound and another occurrence is free.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016015-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is variable $x$ called a "bound variable of $P$"?
|
||||||
|
Back: When $x$ has at least one binding occurrence in $P$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016017-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is variable $x$ called a "free variable of $P$"?
|
||||||
|
Back: When $x$ has at least one free occurrence in $P$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016018-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
{$FV(P)$} denotes the {set of all free variables} of $P$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016020-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
When is a $\lambda$-term considered "closed"?
|
||||||
|
Back: When the term has no free variables.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016021-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What term describes $\lambda$-term $P$ satisfying $FV(P) = \varnothing$?
|
||||||
|
Back: Closed.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016023-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Using $FV$, when is $\lambda$-term $P$ closed?
|
||||||
|
Back: When $FV(P) = \varnothing$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016024-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $\lambda x. y$ a closed term? Why or why not?
|
||||||
|
Back: No. $y$ is a free variable.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016026-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $\lambda x. x$ a closed term? Why or why not?
|
||||||
|
Back: Yes. The term has no free variables.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016027-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which specific occurrences are bound in $\lambda x. x(\lambda y. yz)$?
|
||||||
|
Back: Each $x$ and each $y$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016028-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which specific occurrences are free in $\lambda x. x(\lambda y. yz)$?
|
||||||
|
Back: The only $z$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016030-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which specific occurrences are bpund and binding in $\lambda x. x(\lambda y. yz)$?
|
||||||
|
Back: The first $x$ and the first $y$.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016031-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does expression $FV(\lambda x. xyz)$ evaluate to?
|
||||||
|
Back: $\{y, z\}$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016033-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given $\lambda$-term $P$, what kind of mathematic object is $FV(P)$?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716745016034-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
@ -410,7 +410,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Is $wp(S, Q \lor R) \Rightarrow wp(S, Q) \lor wp(S, R)$ true if $S$ is nondeterministic?
|
Assuming $S$ is nondeterministic, is the following a tautology? $$wp(S, Q \lor R) \Rightarrow wp(S, Q) \lor wp(S, R)$$
|
||||||
Back: No.
|
Back: No.
|
||||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||||
<!--ID: 1716310927700-->
|
<!--ID: 1716310927700-->
|
||||||
|
@ -418,7 +418,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Is $wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$ true if $S$ is nondeterministic?
|
Assuming $S$ is nondeterministic, is the following a tautology? $$wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$$
|
||||||
Back: Yes.
|
Back: Yes.
|
||||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||||
<!--ID: 1716310927701-->
|
<!--ID: 1716310927701-->
|
||||||
|
@ -426,7 +426,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Is $wp(S, Q \lor R) \Rightarrow wp(S, Q) \lor wp(S, R)$ true if $S$ is deterministic?
|
Assuming $S$ is deterministic, is the following a tautology? $$wp(S, Q \lor R) \Rightarrow wp(S, Q) \lor wp(S, R)$$
|
||||||
Back: Yes.
|
Back: Yes.
|
||||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||||
<!--ID: 1716310927703-->
|
<!--ID: 1716310927703-->
|
||||||
|
@ -434,7 +434,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Is $wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$ true if $S$ is deterministic?
|
Assuming $S$ is deterministic, is the following a tautology? $$wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$$
|
||||||
Back: Yes.
|
Back: Yes.
|
||||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||||
<!--ID: 1716310927710-->
|
<!--ID: 1716310927710-->
|
||||||
|
@ -482,7 +482,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What determines the direction of implication in Distributivity of Disjunction?
|
What constant operand evaluations determine the direction of implication in Distributivity of Disjunction?
|
||||||
Back: $F \Rightarrow T$ evaluates truthily but $T \Rightarrow F$ does not.
|
Back: $F \Rightarrow T$ evaluates truthily but $T \Rightarrow F$ does not.
|
||||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||||
<!--ID: 1716310927718-->
|
<!--ID: 1716310927718-->
|
||||||
|
|
|
@ -422,7 +422,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How is the union axiom (general form) expressed using first-order logic?
|
How is the union axiom (general form) expressed using first-order logic?
|
||||||
Back: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists b \in B, x \in b)$$
|
Back: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists a \in A, x \in a)$$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1716309007849-->
|
<!--ID: 1716309007849-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -462,7 +462,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How is $\bigcup A$ represented in first-order logic?
|
How is $\bigcup A$ represented in first-order logic?
|
||||||
Back: $\{x \mid \exists b \in A, x \in b\}$
|
Back: $\{x \mid \exists a \in A, x \in a\}$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1716309007859-->
|
<!--ID: 1716309007859-->
|
||||||
END%%
|
END%%
|
||||||
|
|
Loading…
Reference in New Issue