Inductive sets, `enum` types, and BFS.
parent
2bf0ac9adb
commit
dd5769b630
|
@ -194,7 +194,17 @@
|
|||
"function-kernel.png",
|
||||
"peano-system-i.png",
|
||||
"peano-system-ii.png",
|
||||
"relation-ordering-example.png"
|
||||
"relation-ordering-example.png",
|
||||
"archimedean-property.png",
|
||||
"church-rosser.png",
|
||||
"directed-graph-example.png",
|
||||
"undirected-graph-example.png",
|
||||
"cyclic-undirected-labelled.png",
|
||||
"graph-isomorphic.png",
|
||||
"graph-induced-subgraph.png",
|
||||
"graph-subgraph.png",
|
||||
"graph-non-subgraph.png",
|
||||
"bfs.gif"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -374,8 +384,8 @@
|
|||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
"set/index.md": "7d09418b46856b721f14c5c1bc7320fa",
|
||||
"set/graphs.md": "15aa43bf7f73347219f822e4b400e9bf",
|
||||
"set/index.md": "9ac07f7fc1fadf1b42278df90b464adb",
|
||||
"set/graphs.md": "a56f867f51e69cb7438bbdf6215fca36",
|
||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||
"_journal/2024-03/2024-03-18.md": "2c711c50247a9880f7ed0d33b16e1101",
|
||||
"awk/variables.md": "e40a20545358228319f789243d8b9f77",
|
||||
|
@ -568,8 +578,8 @@
|
|||
"lambda-calculus/alpha-conversion.md": "6df655e60976715e5c6fbbe72b628c6d",
|
||||
"lambda-calculus/index.md": "76d58f85c135c7df00081f47df31168e",
|
||||
"x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656",
|
||||
"x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199",
|
||||
"x86-64/instructions/arithmetic.md": "271218d855e7291f119f96e91f582738",
|
||||
"x86-64/instructions/logical.md": "49d40018f1fcb4ed1595d9175bbaab57",
|
||||
"x86-64/instructions/arithmetic.md": "1a8e0731c60f44b40366b475179377b8",
|
||||
"x86-64/instructions/access.md": "3efe399b89b947ab280dc1e045675390",
|
||||
"x86-64/instructions/index.md": "72c19067e938ab39ea51d25d6ac2bad9",
|
||||
"_journal/2024-06-09.md": "935b3ddf65c51e680ac5c000c7e380af",
|
||||
|
@ -586,10 +596,10 @@
|
|||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||
"set/functions.md": "59e449d6756b57c846cdf07b0a1b4330",
|
||||
"set/functions.md": "b93f460500a6a7228607f842636ed3b3",
|
||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"lambda-calculus/beta-reduction.md": "a8e2825c84e842ceef7aa638a493b91a",
|
||||
"lambda-calculus/beta-reduction.md": "0935987f2bac0e6298735f2b26fd5885",
|
||||
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
|
||||
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
|
||||
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
|
||||
|
@ -675,7 +685,7 @@
|
|||
"logic/classical/index.md": "ee0a4b2bfcfa2cab0880db449cb62df1",
|
||||
"logic/classical/truth-tables.md": "b739e2824a4a5c26ac446e7c15ce02aa",
|
||||
"formal-system/proof-system/index.md": "800e93b72a9852ea4823ab0a40854bba",
|
||||
"formal-system/proof-system/equiv-trans.md": "47afc3ffa0bb758d9629d9d4a401394e",
|
||||
"formal-system/proof-system/equiv-trans.md": "e2eae52f49249b622b87c7fd06967666",
|
||||
"formal-system/logical-system/index.md": "708bb1547e7343c236068c18da3f5dc0",
|
||||
"formal-system/logical-system/pred-logic.md": "34e872f4f920bf4e8c2cd00ee95b310f",
|
||||
"formal-system/logical-system/prop-logic.md": "b61ce051795d5a951c763b928ec5cea8",
|
||||
|
@ -746,7 +756,7 @@
|
|||
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
||||
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
|
||||
"set/order.md": "b69f922200514975b7a7028eef030b59",
|
||||
"set/order.md": "3bf63dd9c8ce6d2b4c6905dab0bd4aad",
|
||||
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
||||
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||
|
@ -756,14 +766,14 @@
|
|||
"calculus/index.md": "5ee4d950533ae330ca5ef9e113fe87f3",
|
||||
"x86-64/instructions/conditions.md": "c5571deac40ac2eeb8666f2d3b3c278e",
|
||||
"_journal/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
"algebra/arch-prop.md": "eccdd685f12898ed8679b558d19dc20a",
|
||||
"algebra/arch-prop.md": "bca3724ef5aae3f7f20907108087af47",
|
||||
"_journal/2024-08/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||
"_journal/2024-08-21.md": "59e9483143ba6beec4f9ae2a09eb90a8",
|
||||
"_journal/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
|
||||
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
|
||||
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
|
||||
"set/natural-numbers.md": "353d1eef7b50fa8f635adc928df734fa",
|
||||
"set/natural-numbers.md": "a14465985e87b81ccbe3a5d27159654a",
|
||||
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
|
||||
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
|
||||
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
|
||||
|
@ -771,7 +781,7 @@
|
|||
"c17/enums.md": "9414fb67aa256a0a11b7240534c67bf6",
|
||||
"c17/derived-types.md": "6fb8f23a2423f05d5bdccb6672a32e38",
|
||||
"c17/basic-types.md": "7c6653bf6dc24c2f2aa72fc95c4f7875",
|
||||
"c17/types/simple.md": "36445dec496b5f7a066bdb7738b2f17e",
|
||||
"c17/types/simple.md": "0fab7afc623e441cd17ae23497f6babe",
|
||||
"c17/types/enumerated.md": "e1f70a30677c776b7b44ac3e0ff4e76d",
|
||||
"c17/types/derived.md": "aff0d2b6d218fb67af3cc92ead924de3",
|
||||
"c17/types/basic.md": "5064e21e683c0218890058882e06b6f3",
|
||||
|
@ -784,7 +794,7 @@
|
|||
"_journal/2024-08/2024-08-25.md": "a3337b4658677810127350ef3e0ad146",
|
||||
"_journal/2024-08-27.md": "d9ffc6ea2128ab5a86ab5f2619206736",
|
||||
"_journal/2024-08/2024-08-26.md": "6f40716e2f01cd097d4881259babf1ba",
|
||||
"c17/types/conversions.md": "477528bf1a297a8fc4eed0ecb4206158",
|
||||
"c17/types/conversions.md": "843ece1b41a227618c797b25cbcdd98b",
|
||||
"_journal/2024-08-28.md": "c9c0e7ab8bcbf23d6332b3f19ec4d997",
|
||||
"_journal/2024-08-30.md": "ff50eb8dd5124c20d4fa291d8b675238",
|
||||
"_journal/2024-08/2024-08-28.md": "92e653379c8d7594bb23de4b330913fe",
|
||||
|
@ -816,7 +826,14 @@
|
|||
"_journal/2024-09/2024-09-17.md": "caea0dab26b0970c045ccd9e5f2f3765",
|
||||
"_journal/2024-09/2024-09-16.md": "7dd800d514051dd36c33c14623c7c5c8",
|
||||
"_journal/2024-09/2024-09-15.md": "0e5d1ecd73edf343d3a268b25140a921",
|
||||
"_journal/2024-09-19.md": "612f08e8f9ce35f71378e2c4a636c862"
|
||||
"_journal/2024-09-19.md": "612f08e8f9ce35f71378e2c4a636c862",
|
||||
"_journal/2024-09-20.md": "69cf79bb0cb8c116a9c0f671671fdc44",
|
||||
"_journal/2024-09/2024-09-19.md": "d9ce529c7df341cc5142b52f2de451f2",
|
||||
"_journal/2024-09-21.md": "c3dbc09d0892e830a16159898f3c30d6",
|
||||
"_journal/2024-09/2024-09-20.md": "69cf79bb0cb8c116a9c0f671671fdc44",
|
||||
"_journal/2024-09-22.md": "2d00b00b4eb9964465f30210187603cf",
|
||||
"_journal/2024-09/2024-09-21.md": "2e6425f4db0187082947c3e0cb24f754",
|
||||
"algorithms/bfs.md": "2734400c0a5843c92adbc2a0f06d4d56"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
---
|
||||
title: "2024-09-22"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Finished "Inductive Sets" in chapter 4 of "Elements of Set Theory".
|
||||
* Finished notes on C's enumerated types.
|
||||
* Notes on [[bfs|BFS]].
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-09-20"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-09-21"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Additional notes on transitive sets.
|
|
@ -78,7 +78,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What mathematical entities are assumed to exist in the formulate of the Archimedean property of the reals?
|
||||
What mathematical entities are presumed in the Archimedean property of the reals?
|
||||
Back: Two positive real numbers.
|
||||
Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
|
||||
<!--ID: 1724155425509-->
|
||||
|
|
|
@ -0,0 +1,177 @@
|
|||
---
|
||||
title: Breadth-First Search
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algorithm data_structure::graph
|
||||
tags:
|
||||
- bfs
|
||||
- graph
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Bread-first search operates on a graph $G = \langle V, E \rangle$ and a **source** vertex $s$. It works by distinguishing between discovered and undiscovered nodes, incrementally marking nodes adjacent to discovered nodes from undiscovered to discovered.
|
||||
|
||||
![[bfs.gif]]
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is BFS an acronym for?
|
||||
Back: **B**readth-**f**irst **s**earch.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727042295709-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Breadth-first search is characterized by a graph and a {source vertex}.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727042295717-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:source} of breadth-first {2:search} is the {2:root} of the breadth-first {1:tree}.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727042295723-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of undirected and directed graphs is BFS applicable to?
|
||||
Back: Both.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727042295728-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to breadth-first trees, what does the predecessor of a node $N$ refer to?
|
||||
Back: The node from which $N$ was discovered.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727042295733-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to breadth-first trees, what does the parent of a node $N$ refer to?
|
||||
Back: The node from which $N$ was discovered.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727042295739-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to breadth-first trees, the predecessor of a node is also known as what?
|
||||
Back: The parent of the node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035958-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to breadth-first trees, the parent of a node is also known as what?
|
||||
Back: The predecessor of the node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035963-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What ADT is typically used to manage the set of most recently discovered BFS vertices?
|
||||
Back: A queue.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727042295745-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which vertices are not discovered during a graph BFS?
|
||||
Back: Those not reachable from the source vertex.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035966-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What basic graph algorithm is the following a demonstration of?
|
||||
![[bfs.gif]]
|
||||
Back: Breadth-first search.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035969-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In BFS, what happens to the nodes found within the internal queue?
|
||||
Back: Undiscovered nodes adjacent to those in the queue are enqueued.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035972-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of BFS or DFS is used to find shortest paths?
|
||||
Back: BFS.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035975-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When can BFS *not* be used to find shortest paths?
|
||||
Back: When the graph in question has differently weighted edges.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035977-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which weighted graphs can BFS be used on to find shortest paths?
|
||||
Back: Graphs with equally weighted edges.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035980-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which standard graph representation has worst-case BFS running time of $O(\lvert V \rvert + \lvert E \rvert)$?
|
||||
Back: The adjacency-matrix representation.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035989-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given graph $\langle V, E \rangle$ with adjacency-list representation, what is the worst-case run time of BFS?
|
||||
Back: $O(\lvert V \rvert + \lvert E \rvert)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035983-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given graph $\langle V, E \rangle$ with adjacency-matrix representation, what is the worst-case run time of BFS?
|
||||
Back: $O(\lvert V \rvert^2)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044035986-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* is BFS of an adjacency-list representation $O(\lvert V \rvert + \lvert E \rvert)$?
|
||||
Back: For each vertex being analyzed, we only examine its immediately adjacent vertices.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044184060-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* is BFS of an adjacency-matrix representation $O(\lvert V \rvert^2)$?
|
||||
Back: For each vertex being analyzed, we must examine $\lvert V \rvert$ entries for adjacent vertices.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1727044184066-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
|
@ -216,14 +216,26 @@ What is the type domain of `a + b`?
|
|||
unsigned short a;
|
||||
signed int b;
|
||||
```
|
||||
Back: Indeterminate.
|
||||
Back: Real.
|
||||
Reference: “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
|
||||
<!--ID: 1724762203469-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* is the type domain of `a + b` indeterminate?
|
||||
What is the common real type of `a + b`?
|
||||
```c
|
||||
unsigned short a;
|
||||
signed int b;
|
||||
```
|
||||
Back: Indeterminate.
|
||||
Reference: “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
|
||||
<!--ID: 1726840632804-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* is the common real type of `a + b` indeterminate?
|
||||
```c
|
||||
unsigned short a;
|
||||
int b;
|
||||
|
@ -235,7 +247,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What *might* the type domain of `a + b` be?
|
||||
What *might* the common real type of `a + b` be?
|
||||
```c
|
||||
unsigned short a;
|
||||
signed int b;
|
||||
|
@ -259,7 +271,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
When is the type domain of `a + b` equal to `unsigned int`?
|
||||
When is the common real type of `a + b` equal to `unsigned int`?
|
||||
```c
|
||||
unsigned short a;
|
||||
signed int b;
|
||||
|
|
|
@ -764,6 +764,64 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
<!--ID: 1723938382398-->
|
||||
END%%
|
||||
|
||||
### Integer Constant Expressions
|
||||
|
||||
An integer constant expression (ICE) is a compile-time integer value. Its value must be determinable at compile time (e.g. no function calls are permitted), and also no evaluation of an object must participate as an operand.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is ICE an acronym for?
|
||||
Back: **I**nteger **c**onstant **e**xpression.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810784-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't `b42` in the following considered an ICE?
|
||||
```c
|
||||
enum { b42 = 42 }
|
||||
```
|
||||
Back: N/A. It is.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810792-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't `b42` in the following considered an ICE?
|
||||
```c
|
||||
signed const a42 = 42;
|
||||
enum { b42 = a42 }
|
||||
```
|
||||
Back: Because it depends on the evaluation of object `a42`.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810798-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't `c52` in the following considered an ICE?
|
||||
```c
|
||||
enum { b42 = 42, c52 = b42 + 10 }
|
||||
```
|
||||
Back: N/A. It is.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810804-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't `b42` in the following considered an ICE?
|
||||
```c
|
||||
signed const a42() { return 42; }
|
||||
enum { b42 = a42() }
|
||||
```
|
||||
Back: Because it depends on a function call.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810810-->
|
||||
END%%
|
||||
|
||||
## Floating Point
|
||||
|
||||
### Literals
|
||||
|
@ -933,7 +991,56 @@ Reference: Van der Linden, Peter. _Expert C Programming: Deep C Secrets_. Progra
|
|||
<!--ID: 1722786892138-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Positional values of `enum`s start at what value?
|
||||
Back: `0`
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810814-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What type is given to enumeration constants?
|
||||
Back: `signed int`
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810819-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of integer expressions are `enum` constants limited to?
|
||||
Back: Integer constant expressions.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810827-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Besides being an ICE, what other condition is expected on `enum` values?
|
||||
Back: The ICE evaluates to an integer that fits within a `signed int`.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810833-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What mechanism(s) are available for defining constants of type `signed int`?
|
||||
Back: `enum`s and macros.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810839-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What mechanism(s) are available for defining constants of type `unsigned int`?
|
||||
Back: Macros.
|
||||
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
<!--ID: 1727022810842-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
|
||||
* Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
|
||||
* Van der Linden, Peter. _Expert C Programming: Deep C Secrets_. Programming Languages / C. Mountain View, Cal.: SunSoft Pr, 1994.
|
||||
|
|
|
@ -468,13 +468,6 @@ $$
|
|||
<!--ID: 1707253246457-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The system of evaluation has {equivalences} whereas the formal system has {theorems}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707253246458-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a "theorem" in the equivalence-transformation formal system?
|
||||
|
|
|
@ -395,7 +395,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What proposition explains how applications relate to the definition of $\beta\text{-nf}$?
|
||||
What proposition explains how atoms and applications relate to the definition of $\beta\text{-nf}$?
|
||||
Back: For all atoms $a$, if $M, N \in \beta\text{-nf}$, then $aMN \in \beta\text{-nf}$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1720645978924-->
|
||||
|
|
|
@ -1655,7 +1655,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $A$?
|
||||
Let $A$ be closed under $S$. What kind of mathematical object is $A$?
|
||||
Back: A set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726363069988-->
|
||||
|
@ -1663,7 +1663,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $S$?
|
||||
Let $A$ be closed under $S$. What kind of mathematical object is $S$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726363069991-->
|
||||
|
|
|
@ -1203,7 +1203,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
With maximum specificity, is $\langle B, D, E, J, K, B, A \rangle$ a path, trail, or walk?
|
||||
Is $\langle B, D, E, J, K, B, A \rangle$ most precisely a path, trail, or walk?
|
||||
![[cyclic-undirected-labelled.png]]
|
||||
Back: A trail.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
|
@ -1212,7 +1212,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
With maximum specificity, is $\langle B, D, E, J, K, B \rangle$ a path, trail, or walk?
|
||||
Is $\langle B, D, E, J, K, B \rangle$ most precisely a path, trail, or walk?
|
||||
![[cyclic-undirected-labelled.png]]
|
||||
Back: A path.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
|
@ -1221,7 +1221,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
With maximum specificity, is $\langle B, D, B, K, L \rangle$ a path, trail, or walk?
|
||||
Is $\langle B, D, B, K, L \rangle$ most precisely a path, trail, or walk?
|
||||
![[cyclic-undirected-labelled.png]]
|
||||
Back: A walk.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
|
@ -1230,7 +1230,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
With maximum specificity, is $\langle A, B, D \rangle$ a path, trail, or walk?
|
||||
Is $\langle A, B, D \rangle$ most precisely a path, trail, or walk?
|
||||
![[cyclic-undirected-labelled.png]]
|
||||
Back: A path.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
|
|
|
@ -787,6 +787,38 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1715900348160-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be a set. What does $\bigcup \mathscr{P} A$ evaluate to?
|
||||
Back: $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726976526809-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be a set. *Why* does $\bigcup \mathscr{P} A = A$?
|
||||
Back: Because $\mathscr{P} A$ evaluates to the subsets of $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726976526815-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be a set. What does $\bigcap \mathscr{P} A$ evaluate to?
|
||||
Back: $\varnothing$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726976526819-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be a set. *Why* does $\bigcap \mathscr{P} A = \varnothing$?
|
||||
Back: Because $\varnothing \in \mathscr{P} A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726976526824-->
|
||||
END%%
|
||||
|
||||
## Subset Axioms
|
||||
|
||||
For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
|
||||
|
|
|
@ -283,7 +283,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $n \in \omega$. What other sets *must* $n$ be a member of?
|
||||
Suppose $n \in \omega$. By definition of natural numbers, what other sets must $n$ be a member of?
|
||||
Back: Every other inductive set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1724486757010-->
|
||||
|
@ -377,6 +377,8 @@ A **Peano system** is a triple $\langle N, S, e \rangle$ consisting of a set $N$
|
|||
* $S$ is one-to-one;
|
||||
* Any subset $A$ of $N$ that contains $e$ and is closed under $S$ equals $N$ itself.
|
||||
|
||||
Given $\sigma = \{\langle n, n^+ \rangle \mid n \in \omega\}$, $\langle \omega, \sigma, 0 \rangle$ is a Peano system.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A Peano system is a tuple consisting of how many members?
|
||||
|
@ -387,7 +389,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $N$?
|
||||
Consider Peano system $\langle N, S, e \rangle$. What kind of mathematical object is $N$?
|
||||
Back: A set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726364667620-->
|
||||
|
@ -395,7 +397,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $S$?
|
||||
Consider Peano system $\langle N, S, e \rangle$. What kind of mathematical object is $S$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726364667623-->
|
||||
|
@ -419,7 +421,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $e$?
|
||||
Consider Peano system $\langle N, S, e \rangle$. What kind of mathematical object is $e$?
|
||||
Back: A set or urelement.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726364667632-->
|
||||
|
@ -538,6 +540,70 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1726364667688-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which Peano system serves as the prototypical example?
|
||||
Back: $\langle \omega, \sigma, 0 \rangle$ where $\sigma$ denotes the successor restricted to the natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580006-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. How is $\omega$ defined?
|
||||
Back: As the set of natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580037-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. How is $\sigma$ defined?
|
||||
Back: $\{\langle n, n^+ \rangle \mid n \in \omega\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580064-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. What kind of mathematical object is $\sigma$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580069-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. What is the domain of $\sigma$?
|
||||
Back: $\omega$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580075-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. What is the codomain of $\sigma$?
|
||||
Back: $\omega$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580081-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. Its Peano induction postulate goes by what other name?
|
||||
Back: The induction principle for $\omega$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580087-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. The induction principle for $\omega$ satisfies what postulate of the system?
|
||||
Back: The Peano induction postulate.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726928580092-->
|
||||
END%%
|
||||
|
||||
## Transitivity
|
||||
|
||||
A set $A$ is said to be **transitive** iff every member of a member of $A$ is itself a member of $A$. We can equivalently express this using any of the following formulations:
|
||||
|
@ -668,6 +734,110 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1726797209168-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which sets serve as the prototypical example of transitive sets?
|
||||
Back: The natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726857149204-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $n \in \omega$ a transitive set?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726857149214-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $\omega$ a transitive set?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726857149225-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How can we alternatively state "$\omega$ is a transitive set"?
|
||||
Back: Every natural number is a set of natural numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726976055230-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How can we more concisely state "every natural number is a set of natural numbers"?
|
||||
Back: $\omega$ is a transitive set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1726976055239-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does $\mathscr{P}\,0$ evaluate to?
|
||||
Back: $1$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806525-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does $\mathscr{P}\,1$ evaluate to?
|
||||
Back: $2$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806532-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does $\mathscr{P}\,2$ evaluate to?
|
||||
Back: $\{0, 1, 2, \{1\}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806534-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $X$ is transitive. Is $\bigcup X$ transitive?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806538-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose for all $x \in X$, $x$ is transitive. Is $X$ transitive?
|
||||
Back: Not necessarily.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806541-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose for all $x \in X$, $x$ is transitive. Is $\bigcup X$ transitive?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806545-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose for all $x \in X$, $x$ is transitive. Is $\bigcap X$ transitive?
|
||||
Back: N/A. If $X = \varnothing$, $\bigcap X$ is undefined.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806550-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $X \neq \varnothing$ and for all $x \in X$, $x$ is transitive. Is $\bigcap X$ transitive?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1727019806554-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -487,7 +487,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider an equivalence class of $x$ (modulo $R$). With maximum specificity, what kind of mathematical object is $R$?
|
||||
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$?
|
||||
Back: A relation.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1721098094144-->
|
||||
|
|
|
@ -32,7 +32,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`leaq`} instruction is to x86-64 as the {`&`} operator is to C.
|
||||
The {`leaq`} instruction is to x86-64 as the {`&`} unary operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1715780601458-->
|
||||
|
|
|
@ -31,7 +31,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`NEG`} instruction class is to x86-64 whereas the {`-`} *unary* operator is to C.
|
||||
The {`NEG`} instruction class is to x86-64 whereas the {`-`} unary operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716126147801-->
|
||||
|
|
Loading…
Reference in New Issue