Inductive sets, `enum` types, and BFS.

main
Joshua Potter 2024-09-22 16:30:49 -06:00
parent 2bf0ac9adb
commit dd5769b630
20 changed files with 581 additions and 40 deletions

View File

@ -194,7 +194,17 @@
"function-kernel.png", "function-kernel.png",
"peano-system-i.png", "peano-system-i.png",
"peano-system-ii.png", "peano-system-ii.png",
"relation-ordering-example.png" "relation-ordering-example.png",
"archimedean-property.png",
"church-rosser.png",
"directed-graph-example.png",
"undirected-graph-example.png",
"cyclic-undirected-labelled.png",
"graph-isomorphic.png",
"graph-induced-subgraph.png",
"graph-subgraph.png",
"graph-non-subgraph.png",
"bfs.gif"
], ],
"File Hashes": { "File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8", "algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
@ -374,8 +384,8 @@
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f", "_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b", "_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53", "set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
"set/index.md": "7d09418b46856b721f14c5c1bc7320fa", "set/index.md": "9ac07f7fc1fadf1b42278df90b464adb",
"set/graphs.md": "15aa43bf7f73347219f822e4b400e9bf", "set/graphs.md": "a56f867f51e69cb7438bbdf6215fca36",
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb", "_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
"_journal/2024-03/2024-03-18.md": "2c711c50247a9880f7ed0d33b16e1101", "_journal/2024-03/2024-03-18.md": "2c711c50247a9880f7ed0d33b16e1101",
"awk/variables.md": "e40a20545358228319f789243d8b9f77", "awk/variables.md": "e40a20545358228319f789243d8b9f77",
@ -568,8 +578,8 @@
"lambda-calculus/alpha-conversion.md": "6df655e60976715e5c6fbbe72b628c6d", "lambda-calculus/alpha-conversion.md": "6df655e60976715e5c6fbbe72b628c6d",
"lambda-calculus/index.md": "76d58f85c135c7df00081f47df31168e", "lambda-calculus/index.md": "76d58f85c135c7df00081f47df31168e",
"x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656", "x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656",
"x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199", "x86-64/instructions/logical.md": "49d40018f1fcb4ed1595d9175bbaab57",
"x86-64/instructions/arithmetic.md": "271218d855e7291f119f96e91f582738", "x86-64/instructions/arithmetic.md": "1a8e0731c60f44b40366b475179377b8",
"x86-64/instructions/access.md": "3efe399b89b947ab280dc1e045675390", "x86-64/instructions/access.md": "3efe399b89b947ab280dc1e045675390",
"x86-64/instructions/index.md": "72c19067e938ab39ea51d25d6ac2bad9", "x86-64/instructions/index.md": "72c19067e938ab39ea51d25d6ac2bad9",
"_journal/2024-06-09.md": "935b3ddf65c51e680ac5c000c7e380af", "_journal/2024-06-09.md": "935b3ddf65c51e680ac5c000c7e380af",
@ -586,10 +596,10 @@
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e", "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728", "_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
"set/functions.md": "59e449d6756b57c846cdf07b0a1b4330", "set/functions.md": "b93f460500a6a7228607f842636ed3b3",
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4", "_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"lambda-calculus/beta-reduction.md": "a8e2825c84e842ceef7aa638a493b91a", "lambda-calculus/beta-reduction.md": "0935987f2bac0e6298735f2b26fd5885",
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725", "_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b", "_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac", "_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
@ -675,7 +685,7 @@
"logic/classical/index.md": "ee0a4b2bfcfa2cab0880db449cb62df1", "logic/classical/index.md": "ee0a4b2bfcfa2cab0880db449cb62df1",
"logic/classical/truth-tables.md": "b739e2824a4a5c26ac446e7c15ce02aa", "logic/classical/truth-tables.md": "b739e2824a4a5c26ac446e7c15ce02aa",
"formal-system/proof-system/index.md": "800e93b72a9852ea4823ab0a40854bba", "formal-system/proof-system/index.md": "800e93b72a9852ea4823ab0a40854bba",
"formal-system/proof-system/equiv-trans.md": "47afc3ffa0bb758d9629d9d4a401394e", "formal-system/proof-system/equiv-trans.md": "e2eae52f49249b622b87c7fd06967666",
"formal-system/logical-system/index.md": "708bb1547e7343c236068c18da3f5dc0", "formal-system/logical-system/index.md": "708bb1547e7343c236068c18da3f5dc0",
"formal-system/logical-system/pred-logic.md": "34e872f4f920bf4e8c2cd00ee95b310f", "formal-system/logical-system/pred-logic.md": "34e872f4f920bf4e8c2cd00ee95b310f",
"formal-system/logical-system/prop-logic.md": "b61ce051795d5a951c763b928ec5cea8", "formal-system/logical-system/prop-logic.md": "b61ce051795d5a951c763b928ec5cea8",
@ -746,7 +756,7 @@
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f", "_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee", "_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025", "_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
"set/order.md": "b69f922200514975b7a7028eef030b59", "set/order.md": "3bf63dd9c8ce6d2b4c6905dab0bd4aad",
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5", "_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c", "ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65", "_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
@ -756,14 +766,14 @@
"calculus/index.md": "5ee4d950533ae330ca5ef9e113fe87f3", "calculus/index.md": "5ee4d950533ae330ca5ef9e113fe87f3",
"x86-64/instructions/conditions.md": "c5571deac40ac2eeb8666f2d3b3c278e", "x86-64/instructions/conditions.md": "c5571deac40ac2eeb8666f2d3b3c278e",
"_journal/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571", "_journal/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
"algebra/arch-prop.md": "eccdd685f12898ed8679b558d19dc20a", "algebra/arch-prop.md": "bca3724ef5aae3f7f20907108087af47",
"_journal/2024-08/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65", "_journal/2024-08/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
"_journal/2024-08-21.md": "59e9483143ba6beec4f9ae2a09eb90a8", "_journal/2024-08-21.md": "59e9483143ba6beec4f9ae2a09eb90a8",
"_journal/2024-08-22.md": "050235d5dc772b542773743b57ce3afe", "_journal/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df", "_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571", "_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50", "_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
"set/natural-numbers.md": "353d1eef7b50fa8f635adc928df734fa", "set/natural-numbers.md": "a14465985e87b81ccbe3a5d27159654a",
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4", "_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c", "_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe", "_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
@ -771,7 +781,7 @@
"c17/enums.md": "9414fb67aa256a0a11b7240534c67bf6", "c17/enums.md": "9414fb67aa256a0a11b7240534c67bf6",
"c17/derived-types.md": "6fb8f23a2423f05d5bdccb6672a32e38", "c17/derived-types.md": "6fb8f23a2423f05d5bdccb6672a32e38",
"c17/basic-types.md": "7c6653bf6dc24c2f2aa72fc95c4f7875", "c17/basic-types.md": "7c6653bf6dc24c2f2aa72fc95c4f7875",
"c17/types/simple.md": "36445dec496b5f7a066bdb7738b2f17e", "c17/types/simple.md": "0fab7afc623e441cd17ae23497f6babe",
"c17/types/enumerated.md": "e1f70a30677c776b7b44ac3e0ff4e76d", "c17/types/enumerated.md": "e1f70a30677c776b7b44ac3e0ff4e76d",
"c17/types/derived.md": "aff0d2b6d218fb67af3cc92ead924de3", "c17/types/derived.md": "aff0d2b6d218fb67af3cc92ead924de3",
"c17/types/basic.md": "5064e21e683c0218890058882e06b6f3", "c17/types/basic.md": "5064e21e683c0218890058882e06b6f3",
@ -784,7 +794,7 @@
"_journal/2024-08/2024-08-25.md": "a3337b4658677810127350ef3e0ad146", "_journal/2024-08/2024-08-25.md": "a3337b4658677810127350ef3e0ad146",
"_journal/2024-08-27.md": "d9ffc6ea2128ab5a86ab5f2619206736", "_journal/2024-08-27.md": "d9ffc6ea2128ab5a86ab5f2619206736",
"_journal/2024-08/2024-08-26.md": "6f40716e2f01cd097d4881259babf1ba", "_journal/2024-08/2024-08-26.md": "6f40716e2f01cd097d4881259babf1ba",
"c17/types/conversions.md": "477528bf1a297a8fc4eed0ecb4206158", "c17/types/conversions.md": "843ece1b41a227618c797b25cbcdd98b",
"_journal/2024-08-28.md": "c9c0e7ab8bcbf23d6332b3f19ec4d997", "_journal/2024-08-28.md": "c9c0e7ab8bcbf23d6332b3f19ec4d997",
"_journal/2024-08-30.md": "ff50eb8dd5124c20d4fa291d8b675238", "_journal/2024-08-30.md": "ff50eb8dd5124c20d4fa291d8b675238",
"_journal/2024-08/2024-08-28.md": "92e653379c8d7594bb23de4b330913fe", "_journal/2024-08/2024-08-28.md": "92e653379c8d7594bb23de4b330913fe",
@ -816,7 +826,14 @@
"_journal/2024-09/2024-09-17.md": "caea0dab26b0970c045ccd9e5f2f3765", "_journal/2024-09/2024-09-17.md": "caea0dab26b0970c045ccd9e5f2f3765",
"_journal/2024-09/2024-09-16.md": "7dd800d514051dd36c33c14623c7c5c8", "_journal/2024-09/2024-09-16.md": "7dd800d514051dd36c33c14623c7c5c8",
"_journal/2024-09/2024-09-15.md": "0e5d1ecd73edf343d3a268b25140a921", "_journal/2024-09/2024-09-15.md": "0e5d1ecd73edf343d3a268b25140a921",
"_journal/2024-09-19.md": "612f08e8f9ce35f71378e2c4a636c862" "_journal/2024-09-19.md": "612f08e8f9ce35f71378e2c4a636c862",
"_journal/2024-09-20.md": "69cf79bb0cb8c116a9c0f671671fdc44",
"_journal/2024-09/2024-09-19.md": "d9ce529c7df341cc5142b52f2de451f2",
"_journal/2024-09-21.md": "c3dbc09d0892e830a16159898f3c30d6",
"_journal/2024-09/2024-09-20.md": "69cf79bb0cb8c116a9c0f671671fdc44",
"_journal/2024-09-22.md": "2d00b00b4eb9964465f30210187603cf",
"_journal/2024-09/2024-09-21.md": "2e6425f4db0187082947c3e0cb24f754",
"algorithms/bfs.md": "2734400c0a5843c92adbc2a0f06d4d56"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -0,0 +1,13 @@
---
title: "2024-09-22"
---
- [x] Anki Flashcards
- [x] KoL
- [ ] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Finished "Inductive Sets" in chapter 4 of "Elements of Set Theory".
* Finished notes on C's enumerated types.
* Notes on [[bfs|BFS]].

View File

@ -0,0 +1,9 @@
---
title: "2024-09-20"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)

View File

@ -0,0 +1,11 @@
---
title: "2024-09-21"
---
- [x] Anki Flashcards
- [x] KoL
- [ ] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Additional notes on transitive sets.

View File

@ -78,7 +78,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What mathematical entities are assumed to exist in the formulate of the Archimedean property of the reals? What mathematical entities are presumed in the Archimedean property of the reals?
Back: Two positive real numbers. Back: Two positive real numbers.
Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137). Reference: “Archimedean Property,” in _Wikipedia_, June 23, 2024, [https://en.wikipedia.org/w/index.php?title=Archimedean_property](https://en.wikipedia.org/w/index.php?title=Archimedean_property&oldid=1230567137).
<!--ID: 1724155425509--> <!--ID: 1724155425509-->

177
notes/algorithms/bfs.md Normal file
View File

@ -0,0 +1,177 @@
---
title: Breadth-First Search
TARGET DECK: Obsidian::STEM
FILE TAGS: algorithm data_structure::graph
tags:
- bfs
- graph
---
## Overview
Bread-first search operates on a graph $G = \langle V, E \rangle$ and a **source** vertex $s$. It works by distinguishing between discovered and undiscovered nodes, incrementally marking nodes adjacent to discovered nodes from undiscovered to discovered.
![[bfs.gif]]
%%ANKI
Basic
What is BFS an acronym for?
Back: **B**readth-**f**irst **s**earch.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727042295709-->
END%%
%%ANKI
Cloze
Breadth-first search is characterized by a graph and a {source vertex}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727042295717-->
END%%
%%ANKI
Cloze
The {1:source} of breadth-first {2:search} is the {2:root} of the breadth-first {1:tree}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727042295723-->
END%%
%%ANKI
Basic
Which of undirected and directed graphs is BFS applicable to?
Back: Both.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727042295728-->
END%%
%%ANKI
Basic
With respect to breadth-first trees, what does the predecessor of a node $N$ refer to?
Back: The node from which $N$ was discovered.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727042295733-->
END%%
%%ANKI
Basic
With respect to breadth-first trees, what does the parent of a node $N$ refer to?
Back: The node from which $N$ was discovered.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727042295739-->
END%%
%%ANKI
Basic
With respect to breadth-first trees, the predecessor of a node is also known as what?
Back: The parent of the node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035958-->
END%%
%%ANKI
Basic
With respect to breadth-first trees, the parent of a node is also known as what?
Back: The predecessor of the node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035963-->
END%%
%%ANKI
Basic
What ADT is typically used to manage the set of most recently discovered BFS vertices?
Back: A queue.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727042295745-->
END%%
%%ANKI
Basic
Which vertices are not discovered during a graph BFS?
Back: Those not reachable from the source vertex.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035966-->
END%%
%%ANKI
Basic
What basic graph algorithm is the following a demonstration of?
![[bfs.gif]]
Back: Breadth-first search.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035969-->
END%%
%%ANKI
Basic
In BFS, what happens to the nodes found within the internal queue?
Back: Undiscovered nodes adjacent to those in the queue are enqueued.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035972-->
END%%
%%ANKI
Basic
Which of BFS or DFS is used to find shortest paths?
Back: BFS.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035975-->
END%%
%%ANKI
Basic
When can BFS *not* be used to find shortest paths?
Back: When the graph in question has differently weighted edges.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035977-->
END%%
%%ANKI
Basic
Which weighted graphs can BFS be used on to find shortest paths?
Back: Graphs with equally weighted edges.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035980-->
END%%
%%ANKI
Basic
Which standard graph representation has worst-case BFS running time of $O(\lvert V \rvert + \lvert E \rvert)$?
Back: The adjacency-matrix representation.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035989-->
END%%
%%ANKI
Basic
Given graph $\langle V, E \rangle$ with adjacency-list representation, what is the worst-case run time of BFS?
Back: $O(\lvert V \rvert + \lvert E \rvert)$
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035983-->
END%%
%%ANKI
Basic
Given graph $\langle V, E \rangle$ with adjacency-matrix representation, what is the worst-case run time of BFS?
Back: $O(\lvert V \rvert^2)$
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044035986-->
END%%
%%ANKI
Basic
*Why* is BFS of an adjacency-list representation $O(\lvert V \rvert + \lvert E \rvert)$?
Back: For each vertex being analyzed, we only examine its immediately adjacent vertices.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044184060-->
END%%
%%ANKI
Basic
*Why* is BFS of an adjacency-matrix representation $O(\lvert V \rvert^2)$?
Back: For each vertex being analyzed, we must examine $\lvert V \rvert$ entries for adjacent vertices.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1727044184066-->
END%%
## Bibliography
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

View File

@ -216,14 +216,26 @@ What is the type domain of `a + b`?
unsigned short a; unsigned short a;
signed int b; signed int b;
``` ```
Back: Indeterminate. Back: Real.
Reference: “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf). Reference: “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
<!--ID: 1724762203469--> <!--ID: 1724762203469-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
*Why* is the type domain of `a + b` indeterminate? What is the common real type of `a + b`?
```c
unsigned short a;
signed int b;
```
Back: Indeterminate.
Reference: “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
<!--ID: 1726840632804-->
END%%
%%ANKI
Basic
*Why* is the common real type of `a + b` indeterminate?
```c ```c
unsigned short a; unsigned short a;
int b; int b;
@ -235,7 +247,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What *might* the type domain of `a + b` be? What *might* the common real type of `a + b` be?
```c ```c
unsigned short a; unsigned short a;
signed int b; signed int b;
@ -259,7 +271,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
When is the type domain of `a + b` equal to `unsigned int`? When is the common real type of `a + b` equal to `unsigned int`?
```c ```c
unsigned short a; unsigned short a;
signed int b; signed int b;

View File

@ -764,6 +764,64 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
<!--ID: 1723938382398--> <!--ID: 1723938382398-->
END%% END%%
### Integer Constant Expressions
An integer constant expression (ICE) is a compile-time integer value. Its value must be determinable at compile time (e.g. no function calls are permitted), and also no evaluation of an object must participate as an operand.
%%ANKI
Basic
What is ICE an acronym for?
Back: **I**nteger **c**onstant **e**xpression.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810784-->
END%%
%%ANKI
Basic
*Why* isn't `b42` in the following considered an ICE?
```c
enum { b42 = 42 }
```
Back: N/A. It is.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810792-->
END%%
%%ANKI
Basic
*Why* isn't `b42` in the following considered an ICE?
```c
signed const a42 = 42;
enum { b42 = a42 }
```
Back: Because it depends on the evaluation of object `a42`.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810798-->
END%%
%%ANKI
Basic
*Why* isn't `c52` in the following considered an ICE?
```c
enum { b42 = 42, c52 = b42 + 10 }
```
Back: N/A. It is.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810804-->
END%%
%%ANKI
Basic
*Why* isn't `b42` in the following considered an ICE?
```c
signed const a42() { return 42; }
enum { b42 = a42() }
```
Back: Because it depends on a function call.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810810-->
END%%
## Floating Point ## Floating Point
### Literals ### Literals
@ -933,7 +991,56 @@ Reference: Van der Linden, Peter. _Expert C Programming: Deep C Secrets_. Progra
<!--ID: 1722786892138--> <!--ID: 1722786892138-->
END%% END%%
%%ANKI
Basic
Positional values of `enum`s start at what value?
Back: `0`
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810814-->
END%%
%%ANKI
Basic
What type is given to enumeration constants?
Back: `signed int`
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810819-->
END%%
%%ANKI
Basic
What kind of integer expressions are `enum` constants limited to?
Back: Integer constant expressions.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810827-->
END%%
%%ANKI
Basic
Besides being an ICE, what other condition is expected on `enum` values?
Back: The ICE evaluates to an integer that fits within a `signed int`.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810833-->
END%%
%%ANKI
Basic
What mechanism(s) are available for defining constants of type `signed int`?
Back: `enum`s and macros.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810839-->
END%%
%%ANKI
Basic
What mechanism(s) are available for defining constants of type `unsigned int`?
Back: Macros.
Reference: Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
<!--ID: 1727022810842-->
END%%
## Bibliography ## Bibliography
* “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf). * “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
* Jens Gustedt, _Modern C_ (Shelter Island, NY: Manning Publications Co, 2020).
* Van der Linden, Peter. _Expert C Programming: Deep C Secrets_. Programming Languages / C. Mountain View, Cal.: SunSoft Pr, 1994. * Van der Linden, Peter. _Expert C Programming: Deep C Secrets_. Programming Languages / C. Mountain View, Cal.: SunSoft Pr, 1994.

View File

@ -468,13 +468,6 @@ $$
<!--ID: 1707253246457--> <!--ID: 1707253246457-->
END%% END%%
%%ANKI
Cloze
The system of evaluation has {equivalences} whereas the formal system has {theorems}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246458-->
END%%
%%ANKI %%ANKI
Basic Basic
What is a "theorem" in the equivalence-transformation formal system? What is a "theorem" in the equivalence-transformation formal system?

View File

@ -395,7 +395,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What proposition explains how applications relate to the definition of $\beta\text{-nf}$? What proposition explains how atoms and applications relate to the definition of $\beta\text{-nf}$?
Back: For all atoms $a$, if $M, N \in \beta\text{-nf}$, then $aMN \in \beta\text{-nf}$. Back: For all atoms $a$, if $M, N \in \beta\text{-nf}$, then $aMN \in \beta\text{-nf}$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720645978924--> <!--ID: 1720645978924-->

View File

@ -1655,7 +1655,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $A$? Let $A$ be closed under $S$. What kind of mathematical object is $A$?
Back: A set. Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363069988--> <!--ID: 1726363069988-->
@ -1663,7 +1663,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $S$? Let $A$ be closed under $S$. What kind of mathematical object is $S$?
Back: A function. Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363069991--> <!--ID: 1726363069991-->

View File

@ -1203,7 +1203,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
With maximum specificity, is $\langle B, D, E, J, K, B, A \rangle$ a path, trail, or walk? Is $\langle B, D, E, J, K, B, A \rangle$ most precisely a path, trail, or walk?
![[cyclic-undirected-labelled.png]] ![[cyclic-undirected-labelled.png]]
Back: A trail. Back: A trail.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
@ -1212,7 +1212,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
With maximum specificity, is $\langle B, D, E, J, K, B \rangle$ a path, trail, or walk? Is $\langle B, D, E, J, K, B \rangle$ most precisely a path, trail, or walk?
![[cyclic-undirected-labelled.png]] ![[cyclic-undirected-labelled.png]]
Back: A path. Back: A path.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
@ -1221,7 +1221,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
With maximum specificity, is $\langle B, D, B, K, L \rangle$ a path, trail, or walk? Is $\langle B, D, B, K, L \rangle$ most precisely a path, trail, or walk?
![[cyclic-undirected-labelled.png]] ![[cyclic-undirected-labelled.png]]
Back: A walk. Back: A walk.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
@ -1230,7 +1230,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
With maximum specificity, is $\langle A, B, D \rangle$ a path, trail, or walk? Is $\langle A, B, D \rangle$ most precisely a path, trail, or walk?
![[cyclic-undirected-labelled.png]] ![[cyclic-undirected-labelled.png]]
Back: A path. Back: A path.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).

View File

@ -787,6 +787,38 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1715900348160--> <!--ID: 1715900348160-->
END%% END%%
%%ANKI
Basic
Let $A$ be a set. What does $\bigcup \mathscr{P} A$ evaluate to?
Back: $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526809-->
END%%
%%ANKI
Basic
Let $A$ be a set. *Why* does $\bigcup \mathscr{P} A = A$?
Back: Because $\mathscr{P} A$ evaluates to the subsets of $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526815-->
END%%
%%ANKI
Basic
Let $A$ be a set. What does $\bigcap \mathscr{P} A$ evaluate to?
Back: $\varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526819-->
END%%
%%ANKI
Basic
Let $A$ be a set. *Why* does $\bigcap \mathscr{P} A = \varnothing$?
Back: Because $\varnothing \in \mathscr{P} A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526824-->
END%%
## Subset Axioms ## Subset Axioms
For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$ For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$

View File

@ -283,7 +283,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Suppose $n \in \omega$. What other sets *must* $n$ be a member of? Suppose $n \in \omega$. By definition of natural numbers, what other sets must $n$ be a member of?
Back: Every other inductive set. Back: Every other inductive set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1724486757010--> <!--ID: 1724486757010-->
@ -377,6 +377,8 @@ A **Peano system** is a triple $\langle N, S, e \rangle$ consisting of a set $N$
* $S$ is one-to-one; * $S$ is one-to-one;
* Any subset $A$ of $N$ that contains $e$ and is closed under $S$ equals $N$ itself. * Any subset $A$ of $N$ that contains $e$ and is closed under $S$ equals $N$ itself.
Given $\sigma = \{\langle n, n^+ \rangle \mid n \in \omega\}$, $\langle \omega, \sigma, 0 \rangle$ is a Peano system.
%%ANKI %%ANKI
Basic Basic
A Peano system is a tuple consisting of how many members? A Peano system is a tuple consisting of how many members?
@ -387,7 +389,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $N$? Consider Peano system $\langle N, S, e \rangle$. What kind of mathematical object is $N$?
Back: A set. Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667620--> <!--ID: 1726364667620-->
@ -395,7 +397,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $S$? Consider Peano system $\langle N, S, e \rangle$. What kind of mathematical object is $S$?
Back: A function. Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667623--> <!--ID: 1726364667623-->
@ -419,7 +421,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $e$? Consider Peano system $\langle N, S, e \rangle$. What kind of mathematical object is $e$?
Back: A set or urelement. Back: A set or urelement.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667632--> <!--ID: 1726364667632-->
@ -538,6 +540,70 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1726364667688--> <!--ID: 1726364667688-->
END%% END%%
%%ANKI
Basic
Which Peano system serves as the prototypical example?
Back: $\langle \omega, \sigma, 0 \rangle$ where $\sigma$ denotes the successor restricted to the natural numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580006-->
END%%
%%ANKI
Basic
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. How is $\omega$ defined?
Back: As the set of natural numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580037-->
END%%
%%ANKI
Basic
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. How is $\sigma$ defined?
Back: $\{\langle n, n^+ \rangle \mid n \in \omega\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580064-->
END%%
%%ANKI
Basic
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. What kind of mathematical object is $\sigma$?
Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580069-->
END%%
%%ANKI
Basic
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. What is the domain of $\sigma$?
Back: $\omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580075-->
END%%
%%ANKI
Basic
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. What is the codomain of $\sigma$?
Back: $\omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580081-->
END%%
%%ANKI
Basic
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. Its Peano induction postulate goes by what other name?
Back: The induction principle for $\omega$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580087-->
END%%
%%ANKI
Basic
Let $\langle \omega, \sigma, 0 \rangle$ be a Peano system. The induction principle for $\omega$ satisfies what postulate of the system?
Back: The Peano induction postulate.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726928580092-->
END%%
## Transitivity ## Transitivity
A set $A$ is said to be **transitive** iff every member of a member of $A$ is itself a member of $A$. We can equivalently express this using any of the following formulations: A set $A$ is said to be **transitive** iff every member of a member of $A$ is itself a member of $A$. We can equivalently express this using any of the following formulations:
@ -668,6 +734,110 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1726797209168--> <!--ID: 1726797209168-->
END%% END%%
%%ANKI
Basic
Which sets serve as the prototypical example of transitive sets?
Back: The natural numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726857149204-->
END%%
%%ANKI
Basic
Is $n \in \omega$ a transitive set?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726857149214-->
END%%
%%ANKI
Basic
Is $\omega$ a transitive set?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726857149225-->
END%%
%%ANKI
Basic
How can we alternatively state "$\omega$ is a transitive set"?
Back: Every natural number is a set of natural numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976055230-->
END%%
%%ANKI
Basic
How can we more concisely state "every natural number is a set of natural numbers"?
Back: $\omega$ is a transitive set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976055239-->
END%%
%%ANKI
Basic
What does $\mathscr{P}\,0$ evaluate to?
Back: $1$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806525-->
END%%
%%ANKI
Basic
What does $\mathscr{P}\,1$ evaluate to?
Back: $2$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806532-->
END%%
%%ANKI
Basic
What does $\mathscr{P}\,2$ evaluate to?
Back: $\{0, 1, 2, \{1\}\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806534-->
END%%
%%ANKI
Basic
Suppose $X$ is transitive. Is $\bigcup X$ transitive?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806538-->
END%%
%%ANKI
Basic
Suppose for all $x \in X$, $x$ is transitive. Is $X$ transitive?
Back: Not necessarily.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806541-->
END%%
%%ANKI
Basic
Suppose for all $x \in X$, $x$ is transitive. Is $\bigcup X$ transitive?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806545-->
END%%
%%ANKI
Basic
Suppose for all $x \in X$, $x$ is transitive. Is $\bigcap X$ transitive?
Back: N/A. If $X = \varnothing$, $\bigcap X$ is undefined.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806550-->
END%%
%%ANKI
Basic
Suppose $X \neq \varnothing$ and for all $x \in X$, $x$ is transitive. Is $\bigcap X$ transitive?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1727019806554-->
END%%
## Bibliography ## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). * Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).

View File

@ -487,7 +487,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Consider an equivalence class of $x$ (modulo $R$). With maximum specificity, what kind of mathematical object is $R$? Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$?
Back: A relation. Back: A relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094144--> <!--ID: 1721098094144-->

View File

@ -32,7 +32,7 @@ END%%
%%ANKI %%ANKI
Cloze Cloze
The {`leaq`} instruction is to x86-64 as the {`&`} operator is to C. The {`leaq`} instruction is to x86-64 as the {`&`} unary operator is to C.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016. Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Tags: c17 Tags: c17
<!--ID: 1715780601458--> <!--ID: 1715780601458-->

View File

@ -31,7 +31,7 @@ END%%
%%ANKI %%ANKI
Cloze Cloze
The {`NEG`} instruction class is to x86-64 whereas the {`-`} *unary* operator is to C. The {`NEG`} instruction class is to x86-64 whereas the {`-`} unary operator is to C.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016. Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Tags: c17 Tags: c17
<!--ID: 1716126147801--> <!--ID: 1716126147801-->