Daily notes.
parent
6cd8e0a2ca
commit
dd03cbe973
|
@ -318,7 +318,7 @@
|
||||||
"_journal/2024-03/2024-03-15.md": "e54b2513beac5f46313b4c37622adf39",
|
"_journal/2024-03/2024-03-15.md": "e54b2513beac5f46313b4c37622adf39",
|
||||||
"_journal/2024-03-17.md": "72e99c7630085aee2c7f340a06b5ada7",
|
"_journal/2024-03-17.md": "72e99c7630085aee2c7f340a06b5ada7",
|
||||||
"_journal/2024-03/2024-03-16.md": "ab7629c24ebe70838072cf6acec47cb0",
|
"_journal/2024-03/2024-03-16.md": "ab7629c24ebe70838072cf6acec47cb0",
|
||||||
"encoding/floating-point.md": "bcb08f08d4ab63cd651b785b343a4b58",
|
"encoding/floating-point.md": "fcec4aaa249fe8fd90b14c3806cefbf5",
|
||||||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||||
|
@ -444,7 +444,7 @@
|
||||||
"_journal/2024-05/2024-05-06.md": "bc9306348b7063b87741768391d9d8a7",
|
"_journal/2024-05/2024-05-06.md": "bc9306348b7063b87741768391d9d8a7",
|
||||||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||||
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
"git/remotes.md": "cbe2cd867f675f156e7fe71ec615890d",
|
||||||
"programming/pred-trans.md": "bea38879a7c500bc06e6319207f2c3d4",
|
"programming/pred-trans.md": "bea38879a7c500bc06e6319207f2c3d4",
|
||||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||||
|
@ -534,10 +534,10 @@
|
||||||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||||
"set/functions.md": "4f5d82d67c9a85db350f1b26175c26ed",
|
"set/functions.md": "9647f452fe31324cbb98d9ff27fbf4ba",
|
||||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"lambda-calculus/beta-reduction.md": "bd7ed2d1b8aae2e584c3e7be1d116170",
|
"lambda-calculus/beta-reduction.md": "5532f9beec9d265724a8d205326bcf67",
|
||||||
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
|
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
|
||||||
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
|
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
|
||||||
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
|
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
|
||||||
|
@ -571,7 +571,16 @@
|
||||||
"_journal/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0",
|
"_journal/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0",
|
||||||
"_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372",
|
"_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372",
|
||||||
"_journal/2024-06-30.md": "97d39a4905e296c6c3fd12e48c4283bd",
|
"_journal/2024-06-30.md": "97d39a4905e296c6c3fd12e48c4283bd",
|
||||||
"_journal/2024-06/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0"
|
"_journal/2024-06/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0",
|
||||||
|
"_journal/2024-07-02.md": "ca0cc5f69580f5f1896f880b0759e466",
|
||||||
|
"_journal/2024-07-01.md": "7cffc27813fe7a7338e411d054ac3bd5",
|
||||||
|
"_journal/2024-06/2024-06-30.md": "ad4ae4690ccf2094413c8525791d1695",
|
||||||
|
"_journal/2024-07-06.md": "2b794e424985f0e7d4d899163ce5733c",
|
||||||
|
"_journal/2024-07/2024-07-05.md": "75181699a37aaab90bfddcdba46e5ef4",
|
||||||
|
"_journal/2024-07/2024-07-04.md": "d34b6c7ed601ca8d0792c749ae40f8a9",
|
||||||
|
"_journal/2024-07/2024-07-03.md": "55d4b1e159b41c6dd52943e5b7a50961",
|
||||||
|
"_journal/2024-07/2024-07-02.md": "489464ee47c3ba21307bfabae569ad29",
|
||||||
|
"_journal/2024-07/2024-07-01.md": "7cffc27813fe7a7338e411d054ac3bd5"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-07-06"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-07-02"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [x] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
||||||
|
---
|
||||||
|
title: "2024-07-03"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
|
* Read chapter 9 "Material Constitution* of "An Introduction to Ontology".
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-07-04"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
||||||
|
---
|
||||||
|
title: "2024-07-05"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
|
* Finished chapter 10 "Works of Music" in "An Introduction to Ontology".
|
|
@ -139,7 +139,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What does it mean for scientific notation $m \times 2^n$ to be in normalized form?
|
What does it mean for scientific notation $m \times 2^n$ to be in normalized form?
|
||||||
Back: That $m$ has value $1$.
|
Back: That $1 \leq |m| < 2$.
|
||||||
Reference: “Scientific Notation.” In _Wikipedia_, March 6, 2024. [https://en.wikipedia.org/w/index.php?title=Scientific_notation&oldid=1212169750](https://en.wikipedia.org/w/index.php?title=Scientific_notation&oldid=1212169750).
|
Reference: “Scientific Notation.” In _Wikipedia_, March 6, 2024. [https://en.wikipedia.org/w/index.php?title=Scientific_notation&oldid=1212169750](https://en.wikipedia.org/w/index.php?title=Scientific_notation&oldid=1212169750).
|
||||||
<!--ID: 1710556914951-->
|
<!--ID: 1710556914951-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -38,14 +38,6 @@ Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Soft
|
||||||
<!--ID: 1715623927191-->
|
<!--ID: 1715623927191-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What two properties are initialized when creating a new git remote?
|
|
||||||
Back: The URL and fetch refspec.
|
|
||||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
|
||||||
<!--ID: 1715623927194-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What kind of git refs are associated with remotes?
|
What kind of git refs are associated with remotes?
|
||||||
|
|
|
@ -49,7 +49,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What is a $\lambda$-term of $(\lambda x.M)N$ called?
|
A $\lambda$-term of form $(\lambda x.M)N$ is called what?
|
||||||
Back: A $\beta$-redex.
|
Back: A $\beta$-redex.
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
<!--ID: 1718475424846-->
|
<!--ID: 1718475424846-->
|
||||||
|
|
|
@ -328,7 +328,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
|
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more compactly write $G \circ F$?
|
||||||
Back: $I_A$
|
Back: $I_A$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719681913534-->
|
<!--ID: 1719681913534-->
|
||||||
|
@ -336,7 +336,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
|
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more compactly write $F \circ G$?
|
||||||
Back: N/A.
|
Back: N/A.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719681913535-->
|
<!--ID: 1719681913535-->
|
||||||
|
@ -553,7 +553,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
|
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more compactly write $G \circ F$?
|
||||||
Back: N/A.
|
Back: N/A.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719681913536-->
|
<!--ID: 1719681913536-->
|
||||||
|
@ -561,8 +561,8 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
|
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more compactly write $F \circ G$?
|
||||||
Back: The identity function on $B$.
|
Back: $I_B$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719681913537-->
|
<!--ID: 1719681913537-->
|
||||||
END%%
|
END%%
|
||||||
|
|
Loading…
Reference in New Issue