Left/right inverses. AoC.

c-declarations
Joshua Potter 2024-06-29 12:06:35 -06:00
parent 42fc08e4c1
commit d74f149d92
5 changed files with 300 additions and 15 deletions

View File

@ -322,7 +322,7 @@
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f", "_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b", "_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53", "set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
"set/index.md": "c366c641119b2f83558666eede68eef0", "set/index.md": "fb066e22d2531f530e2899df975e4e35",
"set/graphs.md": "75f0ee994436ae39f7ba94a4eb73435a", "set/graphs.md": "75f0ee994436ae39f7ba94a4eb73435a",
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb", "_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391", "_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
@ -508,7 +508,7 @@
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
"set/relations.md": "3355df45182a017a56670594ba8d5a13", "set/relations.md": "83e38548017dda4fa6371fa1b312b2e2",
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
@ -534,7 +534,7 @@
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e", "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728", "_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
"set/functions.md": "b436a00b2d21aa6870b8c5f0684d0e51", "set/functions.md": "8d2f0ef04e32de2de5054127f6970f18",
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4", "_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"lambda-calculus/beta-reduction.md": "bd7ed2d1b8aae2e584c3e7be1d116170", "lambda-calculus/beta-reduction.md": "bd7ed2d1b8aae2e584c3e7be1d116170",
@ -568,7 +568,7 @@
"_journal/2024-06-28.md": "327d1abef4be0d1526a585dcfe03db5a", "_journal/2024-06-28.md": "327d1abef4be0d1526a585dcfe03db5a",
"_journal/2024-06/2024-06-27.md": "237c73268a28f652985a5ef7ca7e188e", "_journal/2024-06/2024-06-27.md": "237c73268a28f652985a5ef7ca7e188e",
"_journal/2024-06/2024-06-26.md": "9c5d7e6395496736f2f268e9fdba117f", "_journal/2024-06/2024-06-26.md": "9c5d7e6395496736f2f268e9fdba117f",
"_journal/2024-06-29.md": "d4bdb04616774ff741886e94e5f2e385", "_journal/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0",
"_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372" "_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372"
}, },
"fields_dict": { "fields_dict": {

View File

@ -2,8 +2,10 @@
title: "2024-06-29" title: "2024-06-29"
--- ---
- [ ] Anki Flashcards - [x] Anki Flashcards
- [x] KoL - [x] KoL
- [x] OGS - [x] OGS
- [ ] Sheet Music (10 min.) - [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story) - [ ] Korean (Read 1 Story)
* Left and right inverses. Touched on the Axiom of Choice.

View File

@ -9,7 +9,7 @@ tags:
## Overview ## Overview
A **function** $F$ is a single-valued [[relations|relation]]. We say $F$ **maps $A$ into $B$**, denoted $F \colon A \rightarrow B$, if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F \subseteq B$. A **function** $F$ is a single-valued [[relations|relation]]. We say $F$ **maps $A$ into $B$**, denoted $F \colon A \rightarrow B$, if and only if $F$ is a function, $\mathop{\text{dom}}F = A$, and $\mathop{\text{ran}}F \subseteq B$.
%%ANKI %%ANKI
Basic Basic
@ -122,6 +122,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1718464126883--> <!--ID: 1718464126883-->
END%% END%%
%%ANKI
Basic
Is $\varnothing$ a function?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913529-->
END%%
## Injections ## Injections
A function is **injective** or **one-to-one** if each element of the codomain is mapped to by at most one element of the domain. A function is **injective** or **one-to-one** if each element of the codomain is mapped to by at most one element of the domain.
@ -258,6 +266,129 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1718465870541--> <!--ID: 1718465870541-->
END%% END%%
### Left Inverses
Assume that $F \colon A \rightarrow B$ is a function and $A \neq \varnothing$. Then there exists a function $G \colon B \rightarrow A$ (a **left inverse**) such that $G \circ F = I_A$ if and only if $F$ is one-to-one.
%%ANKI
Basic
What is the most specific mathematical object that describes a left inverse?
Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683931406-->
END%%
%%ANKI
Basic
How is a left inverse of $F \colon A \rightarrow B$ defined?
Back: As a function $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719684322548-->
END%%
%%ANKI
Basic
How is a left inverse of set $A$ defined?
Back: N/A.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719684322553-->
END%%
%%ANKI
Basic
Consider $F \colon A \rightarrow B$. If $F$ has a left inverse, what is its domain?
Back: $B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719680660507-->
END%%
%%ANKI
Basic
What does $I_A$ usually denote?
Back: The identity function on set $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913532-->
END%%
%%ANKI
Basic
How is the identity function on set $B$ denoted?
Back: $I_B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683703723-->
END%%
%%ANKI
Basic
Consider $F \colon A \rightarrow B$. If $F$ has a left inverse, what is its codomain?
Back: $A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719680660511-->
END%%
%%ANKI
Basic
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
Back: $I_A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913534-->
END%%
%%ANKI
Basic
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
Back: N/A.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913535-->
END%%
%%ANKI
Basic
Let $F$ be a left inverse of function $G$. How do they interestingly compose?
Back: As $F \circ G$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913538-->
END%%
%%ANKI
Cloze
Suppose $F \colon A \rightarrow B$ and {1:$A \neq \varnothing$}. $F$ has a {2:left} inverse iff $F$ is {3:one-to-one}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913540-->
END%%
%%ANKI
Basic
Does proving "left inverses iff injective" rely on AoC?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913542-->
END%%
%%ANKI
Basic
What are the hypotheses of "left inverses iff injective"?
Back: Suppose $F \colon A \rightarrow B$ such that $A \neq \varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683703726-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. *Why* does "left inverses iff injective" require $A \neq \varnothing$?
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683703729-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$ and $A \neq \varnothing$. *Why* does "left inverses iff injective" require AoC?
Back: It doesn't.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683703730-->
END%%
## Surjections ## Surjections
A function is **surjective** or **onto** if each element of the codomain is mapped to by at least one element of the domain. That is, **$F$ maps $A$ onto $B$** if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F = B$. A function is **surjective** or **onto** if each element of the codomain is mapped to by at least one element of the domain. That is, **$F$ maps $A$ onto $B$** if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F = B$.
@ -369,6 +500,120 @@ Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 202
<!--ID: 1718465870573--> <!--ID: 1718465870573-->
END%% END%%
### Right Inverses
Assume that $F \colon A \rightarrow B$ is a function and $A \neq \varnothing$. Then there exists a function $G \colon B \rightarrow A$ (a right inverse) such that $F \circ G = I_B$ if and only if $F$ maps $A$ onto $B$.
%%ANKI
Basic
What is the most specific mathematical object that describes a right inverse?
Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683931410-->
END%%
%%ANKI
Basic
How is a right inverse of $F \colon A \rightarrow B$ defined?
Back: As a function $G \colon B \rightarrow A$ such that $F \circ G = I_B$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719684322557-->
END%%
%%ANKI
Basic
How is a right inverse of set $A$ defined?
Back: N/A.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719684322561-->
END%%
%%ANKI
Cloze
{1:Left} inverses are to {2:injections} whereas {2:right} inverses are to {1:surjections}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913533-->
END%%
%%ANKI
Basic
Consider $F \colon A \rightarrow B$. If $F$ has a right inverse, what is its domain?
Back: $B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719680660514-->
END%%
%%ANKI
Basic
Consider $F \colon A \rightarrow B$. If $F$ has a right inverse, what is its codomain?
Back: $A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719680660513-->
END%%
%%ANKI
Basic
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
Back: N/A.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913536-->
END%%
%%ANKI
Basic
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
Back: The identity function on $B$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913537-->
END%%
%%ANKI
Basic
Let $F$ be a right inverse of function $G$. How do they interestingly compose?
Back: As $G \circ F$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913539-->
END%%
%%ANKI
Cloze
Suppose $F \colon A \rightarrow B$ and {1:$A \neq \varnothing$}. $F$ has a {2:right} inverse iff $F$ is {3:onto $B$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913541-->
END%%
%%ANKI
Basic
Does proving "right inverses iff surjective" rely on AoC?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913543-->
END%%
%%ANKI
Basic
What are the hypotheses of "right inverses iff surjective"?
Back: Suppose $F \colon A \rightarrow B$ such that $A \neq \varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683703732-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. *Why* does "right inverses iff surjective" require $A \neq \varnothing$?
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683703734-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$ and $A \neq \varnothing$. *Why* does "right inverses iff surjective" require AoC?
Back: There is no other mechanism for choosing an $x \in A$ for *each* $y \in B$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683703736-->
END%%
## Bijections ## Bijections
A function is **bijective** or a **one-to-one correspondence** if each element of the codomain is mapped to by exactly one element of the domain. A function is **bijective** or a **one-to-one correspondence** if each element of the codomain is mapped to by exactly one element of the domain.
@ -441,6 +686,14 @@ END%%
## Inverses ## Inverses
Let $F$ be an arbitrary set. The **inverse** of $F$ is the set $$F^{-1} = \{\langle u, v \rangle \mid vFu\}$$ Let $F$ be an arbitrary set. The **inverse** of $F$ is the set $$F^{-1} = \{\langle u, v \rangle \mid vFu\}$$
%%ANKI
Basic
What is the most specific mathematical object that describes an inverse?
Back: A relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719683931414-->
END%%
%%ANKI %%ANKI
Basic Basic
What kind of mathematical object does the inverse operation apply to? What kind of mathematical object does the inverse operation apply to?
@ -656,6 +909,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1719398756558--> <!--ID: 1719398756558-->
END%% END%%
%%ANKI
Basic
Consider function $F \colon \varnothing \rightarrow B$. What is $F^{-1}$?
Back: $\varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913530-->
END%%
## Compositions ## Compositions
Let $F$ and $G$ be arbitrary sets. The **composition** of $F$ and $G$ is the set $$F \circ G = \{\langle u, v \rangle \mid \exists t, uGt \land tFv \}$$ Let $F$ and $G$ be arbitrary sets. The **composition** of $F$ and $G$ is the set $$F \circ G = \{\langle u, v \rangle \mid \exists t, uGt \land tFv \}$$
@ -997,14 +1258,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1719103644319--> <!--ID: 1719103644319-->
END%% END%%
%%ANKI
Basic
How is $F^{-1}[\![A]\!]$ defined using set-builder notation?
Back: $F^{-1}[\![A]\!] = \{x \in \mathop{\text{dom}} F \mid F(x) \in A \}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719103644320-->
END%%
%%ANKI %%ANKI
Basic Basic
Let $F$ be an arbitrary set. What is $F[\![\varnothing]\!]$? Let $F$ be an arbitrary set. What is $F[\![\varnothing]\!]$?

View File

@ -850,6 +850,28 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1717368558164--> <!--ID: 1717368558164-->
END%% END%%
## Axiom of Choice
### Relation Form
For any relation $R$ there exists a function $F \subseteq R$ with $\mathop{\text{dom}}F = \mathop{\text{dom}}R$.
%%ANKI
Basic
What is AoC an acronym for?
Back: The **A**xiom **o**f **C**hoice.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913526-->
END%%
%%ANKI
Basic
What does the Axiom of Choice (relation form) state?
Back: For any relation $R$ there exists a function $F \subseteq R$ with $\mathop{\text{dom}}F = \mathop{\text{dom}}R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913527-->
END%%
## Bibliography ## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). * Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).

View File

@ -95,6 +95,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1717678753145--> <!--ID: 1717678753145-->
END%% END%%
%%ANKI
Basic
Is $\varnothing$ a relation?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913524-->
END%%
A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as: A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as:
* $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$ * $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$