Left/right inverses. AoC.
parent
42fc08e4c1
commit
d74f149d92
|
@ -322,7 +322,7 @@
|
||||||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||||
"set/index.md": "c366c641119b2f83558666eede68eef0",
|
"set/index.md": "fb066e22d2531f530e2899df975e4e35",
|
||||||
"set/graphs.md": "75f0ee994436ae39f7ba94a4eb73435a",
|
"set/graphs.md": "75f0ee994436ae39f7ba94a4eb73435a",
|
||||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||||
|
@ -508,7 +508,7 @@
|
||||||
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
||||||
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
||||||
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
||||||
"set/relations.md": "3355df45182a017a56670594ba8d5a13",
|
"set/relations.md": "83e38548017dda4fa6371fa1b312b2e2",
|
||||||
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
||||||
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
||||||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||||
|
@ -534,7 +534,7 @@
|
||||||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||||
"set/functions.md": "b436a00b2d21aa6870b8c5f0684d0e51",
|
"set/functions.md": "8d2f0ef04e32de2de5054127f6970f18",
|
||||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"lambda-calculus/beta-reduction.md": "bd7ed2d1b8aae2e584c3e7be1d116170",
|
"lambda-calculus/beta-reduction.md": "bd7ed2d1b8aae2e584c3e7be1d116170",
|
||||||
|
@ -568,7 +568,7 @@
|
||||||
"_journal/2024-06-28.md": "327d1abef4be0d1526a585dcfe03db5a",
|
"_journal/2024-06-28.md": "327d1abef4be0d1526a585dcfe03db5a",
|
||||||
"_journal/2024-06/2024-06-27.md": "237c73268a28f652985a5ef7ca7e188e",
|
"_journal/2024-06/2024-06-27.md": "237c73268a28f652985a5ef7ca7e188e",
|
||||||
"_journal/2024-06/2024-06-26.md": "9c5d7e6395496736f2f268e9fdba117f",
|
"_journal/2024-06/2024-06-26.md": "9c5d7e6395496736f2f268e9fdba117f",
|
||||||
"_journal/2024-06-29.md": "d4bdb04616774ff741886e94e5f2e385",
|
"_journal/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0",
|
||||||
"_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372"
|
"_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
|
|
|
@ -2,8 +2,10 @@
|
||||||
title: "2024-06-29"
|
title: "2024-06-29"
|
||||||
---
|
---
|
||||||
|
|
||||||
- [ ] Anki Flashcards
|
- [x] Anki Flashcards
|
||||||
- [x] KoL
|
- [x] KoL
|
||||||
- [x] OGS
|
- [x] OGS
|
||||||
- [ ] Sheet Music (10 min.)
|
- [ ] Sheet Music (10 min.)
|
||||||
- [ ] Korean (Read 1 Story)
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
|
* Left and right inverses. Touched on the Axiom of Choice.
|
|
@ -9,7 +9,7 @@ tags:
|
||||||
|
|
||||||
## Overview
|
## Overview
|
||||||
|
|
||||||
A **function** $F$ is a single-valued [[relations|relation]]. We say $F$ **maps $A$ into $B$**, denoted $F \colon A \rightarrow B$, if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F \subseteq B$.
|
A **function** $F$ is a single-valued [[relations|relation]]. We say $F$ **maps $A$ into $B$**, denoted $F \colon A \rightarrow B$, if and only if $F$ is a function, $\mathop{\text{dom}}F = A$, and $\mathop{\text{ran}}F \subseteq B$.
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
|
@ -122,6 +122,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1718464126883-->
|
<!--ID: 1718464126883-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $\varnothing$ a function?
|
||||||
|
Back: Yes.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913529-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Injections
|
## Injections
|
||||||
|
|
||||||
A function is **injective** or **one-to-one** if each element of the codomain is mapped to by at most one element of the domain.
|
A function is **injective** or **one-to-one** if each element of the codomain is mapped to by at most one element of the domain.
|
||||||
|
@ -258,6 +266,129 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1718465870541-->
|
<!--ID: 1718465870541-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
### Left Inverses
|
||||||
|
|
||||||
|
Assume that $F \colon A \rightarrow B$ is a function and $A \neq \varnothing$. Then there exists a function $G \colon B \rightarrow A$ (a **left inverse**) such that $G \circ F = I_A$ if and only if $F$ is one-to-one.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the most specific mathematical object that describes a left inverse?
|
||||||
|
Back: A function.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683931406-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is a left inverse of $F \colon A \rightarrow B$ defined?
|
||||||
|
Back: As a function $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719684322548-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is a left inverse of set $A$ defined?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719684322553-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider $F \colon A \rightarrow B$. If $F$ has a left inverse, what is its domain?
|
||||||
|
Back: $B$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719680660507-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does $I_A$ usually denote?
|
||||||
|
Back: The identity function on set $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913532-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is the identity function on set $B$ denoted?
|
||||||
|
Back: $I_B$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683703723-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider $F \colon A \rightarrow B$. If $F$ has a left inverse, what is its codomain?
|
||||||
|
Back: $A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719680660511-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
|
||||||
|
Back: $I_A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913534-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913535-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F$ be a left inverse of function $G$. How do they interestingly compose?
|
||||||
|
Back: As $F \circ G$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913538-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Suppose $F \colon A \rightarrow B$ and {1:$A \neq \varnothing$}. $F$ has a {2:left} inverse iff $F$ is {3:one-to-one}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913540-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Does proving "left inverses iff injective" rely on AoC?
|
||||||
|
Back: No.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913542-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What are the hypotheses of "left inverses iff injective"?
|
||||||
|
Back: Suppose $F \colon A \rightarrow B$ such that $A \neq \varnothing$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683703726-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F \colon A \rightarrow B$. *Why* does "left inverses iff injective" require $A \neq \varnothing$?
|
||||||
|
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683703729-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F \colon A \rightarrow B$ and $A \neq \varnothing$. *Why* does "left inverses iff injective" require AoC?
|
||||||
|
Back: It doesn't.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683703730-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Surjections
|
## Surjections
|
||||||
|
|
||||||
A function is **surjective** or **onto** if each element of the codomain is mapped to by at least one element of the domain. That is, **$F$ maps $A$ onto $B$** if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F = B$.
|
A function is **surjective** or **onto** if each element of the codomain is mapped to by at least one element of the domain. That is, **$F$ maps $A$ onto $B$** if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F = B$.
|
||||||
|
@ -369,6 +500,120 @@ Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 202
|
||||||
<!--ID: 1718465870573-->
|
<!--ID: 1718465870573-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
### Right Inverses
|
||||||
|
|
||||||
|
Assume that $F \colon A \rightarrow B$ is a function and $A \neq \varnothing$. Then there exists a function $G \colon B \rightarrow A$ (a right inverse) such that $F \circ G = I_B$ if and only if $F$ maps $A$ onto $B$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the most specific mathematical object that describes a right inverse?
|
||||||
|
Back: A function.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683931410-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is a right inverse of $F \colon A \rightarrow B$ defined?
|
||||||
|
Back: As a function $G \colon B \rightarrow A$ such that $F \circ G = I_B$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719684322557-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is a right inverse of set $A$ defined?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719684322561-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
{1:Left} inverses are to {2:injections} whereas {2:right} inverses are to {1:surjections}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913533-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider $F \colon A \rightarrow B$. If $F$ has a right inverse, what is its domain?
|
||||||
|
Back: $B$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719680660514-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider $F \colon A \rightarrow B$. If $F$ has a right inverse, what is its codomain?
|
||||||
|
Back: $A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719680660513-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913536-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
|
||||||
|
Back: The identity function on $B$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913537-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F$ be a right inverse of function $G$. How do they interestingly compose?
|
||||||
|
Back: As $G \circ F$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913539-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Suppose $F \colon A \rightarrow B$ and {1:$A \neq \varnothing$}. $F$ has a {2:right} inverse iff $F$ is {3:onto $B$}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913541-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Does proving "right inverses iff surjective" rely on AoC?
|
||||||
|
Back: Yes.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913543-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What are the hypotheses of "right inverses iff surjective"?
|
||||||
|
Back: Suppose $F \colon A \rightarrow B$ such that $A \neq \varnothing$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683703732-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F \colon A \rightarrow B$. *Why* does "right inverses iff surjective" require $A \neq \varnothing$?
|
||||||
|
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683703734-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F \colon A \rightarrow B$ and $A \neq \varnothing$. *Why* does "right inverses iff surjective" require AoC?
|
||||||
|
Back: There is no other mechanism for choosing an $x \in A$ for *each* $y \in B$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683703736-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bijections
|
## Bijections
|
||||||
|
|
||||||
A function is **bijective** or a **one-to-one correspondence** if each element of the codomain is mapped to by exactly one element of the domain.
|
A function is **bijective** or a **one-to-one correspondence** if each element of the codomain is mapped to by exactly one element of the domain.
|
||||||
|
@ -441,6 +686,14 @@ END%%
|
||||||
## Inverses
|
## Inverses
|
||||||
|
|
||||||
Let $F$ be an arbitrary set. The **inverse** of $F$ is the set $$F^{-1} = \{\langle u, v \rangle \mid vFu\}$$
|
Let $F$ be an arbitrary set. The **inverse** of $F$ is the set $$F^{-1} = \{\langle u, v \rangle \mid vFu\}$$
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the most specific mathematical object that describes an inverse?
|
||||||
|
Back: A relation.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719683931414-->
|
||||||
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What kind of mathematical object does the inverse operation apply to?
|
What kind of mathematical object does the inverse operation apply to?
|
||||||
|
@ -656,6 +909,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1719398756558-->
|
<!--ID: 1719398756558-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider function $F \colon \varnothing \rightarrow B$. What is $F^{-1}$?
|
||||||
|
Back: $\varnothing$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913530-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Compositions
|
## Compositions
|
||||||
|
|
||||||
Let $F$ and $G$ be arbitrary sets. The **composition** of $F$ and $G$ is the set $$F \circ G = \{\langle u, v \rangle \mid \exists t, uGt \land tFv \}$$
|
Let $F$ and $G$ be arbitrary sets. The **composition** of $F$ and $G$ is the set $$F \circ G = \{\langle u, v \rangle \mid \exists t, uGt \land tFv \}$$
|
||||||
|
@ -997,14 +1258,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1719103644319-->
|
<!--ID: 1719103644319-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
How is $F^{-1}[\![A]\!]$ defined using set-builder notation?
|
|
||||||
Back: $F^{-1}[\![A]\!] = \{x \in \mathop{\text{dom}} F \mid F(x) \in A \}$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1719103644320-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $F$ be an arbitrary set. What is $F[\![\varnothing]\!]$?
|
Let $F$ be an arbitrary set. What is $F[\![\varnothing]\!]$?
|
||||||
|
|
|
@ -850,6 +850,28 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1717368558164-->
|
<!--ID: 1717368558164-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
## Axiom of Choice
|
||||||
|
|
||||||
|
### Relation Form
|
||||||
|
|
||||||
|
For any relation $R$ there exists a function $F \subseteq R$ with $\mathop{\text{dom}}F = \mathop{\text{dom}}R$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is AoC an acronym for?
|
||||||
|
Back: The **A**xiom **o**f **C**hoice.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913526-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does the Axiom of Choice (relation form) state?
|
||||||
|
Back: For any relation $R$ there exists a function $F \subseteq R$ with $\mathop{\text{dom}}F = \mathop{\text{dom}}R$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913527-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
|
|
@ -95,6 +95,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1717678753145-->
|
<!--ID: 1717678753145-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $\varnothing$ a relation?
|
||||||
|
Back: Yes.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719681913524-->
|
||||||
|
END%%
|
||||||
|
|
||||||
A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as:
|
A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as:
|
||||||
|
|
||||||
* $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$
|
* $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$
|
||||||
|
|
Loading…
Reference in New Issue