Additional notes on cardinal numbers.
parent
6761cc24f5
commit
d10dc3d24b
|
@ -966,7 +966,7 @@
|
||||||
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||||
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||||
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
|
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
|
||||||
"set/cardinality.md": "1a9a31dcc1d1bddce9a316f9a3062324",
|
"set/cardinality.md": "9609eca0fe79de40e43d56cd0ef45985",
|
||||||
"geometry/area.md": "7f947bb5ac782495a1fb4a63bb2463e7",
|
"geometry/area.md": "7f947bb5ac782495a1fb4a63bb2463e7",
|
||||||
"_journal/2024-11-23.md": "911f82ab8aede5ecdb96493aef64b0b9",
|
"_journal/2024-11-23.md": "911f82ab8aede5ecdb96493aef64b0b9",
|
||||||
"_journal/2024-11/2024-11-22.md": "51117030e2364dbce3a8d507dead86ae",
|
"_journal/2024-11/2024-11-22.md": "51117030e2364dbce3a8d507dead86ae",
|
||||||
|
@ -1023,7 +1023,7 @@
|
||||||
"_journal/2024-12/2024-12-13.md": "d2223f90fd1ce3d82a4fbb6828a1ec56",
|
"_journal/2024-12/2024-12-13.md": "d2223f90fd1ce3d82a4fbb6828a1ec56",
|
||||||
"_journal/2024-12/2024-12-12.md": "59e71caa4e9ebdb11a7c7549c33bed20",
|
"_journal/2024-12/2024-12-12.md": "59e71caa4e9ebdb11a7c7549c33bed20",
|
||||||
"linkers/object-files.md": "77767f310330b8650a5023dd0522226c",
|
"linkers/object-files.md": "77767f310330b8650a5023dd0522226c",
|
||||||
"_journal/2024-12-16.md": "77c27920d5b44b6315c2ea22b990eefc",
|
"_journal/2024-12-16.md": "6c03d49c05eb47486aae48aa40dcef9f",
|
||||||
"_journal/2024-12/2024-12-15.md": "be66c8808d8bb66d4e7b91db7c93c94a",
|
"_journal/2024-12/2024-12-15.md": "be66c8808d8bb66d4e7b91db7c93c94a",
|
||||||
"linkers/elf.md": "83a27a7d71ca26f8f034770a31d58fa0",
|
"linkers/elf.md": "83a27a7d71ca26f8f034770a31d58fa0",
|
||||||
"c17/strings/printf.md": "8b67cfbccaf35dd9488b73e7e5555405",
|
"c17/strings/printf.md": "8b67cfbccaf35dd9488b73e7e5555405",
|
||||||
|
|
|
@ -8,4 +8,5 @@ title: "2024-12-16"
|
||||||
- [ ] Sheet Music (10 min.)
|
- [ ] Sheet Music (10 min.)
|
||||||
- [ ] Korean (Read 1 Story)
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
* Notes on sections found within an [[elf|ELF]] file.
|
* Notes on sections found within an [[elf|ELF]] file.
|
||||||
|
* Additional examples on cardinal numbers and their relation to the recursion theorem.
|
|
@ -643,15 +643,15 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K$ and $L$ be sets. How is $\mathop{\text{card}}(K \cup L)$ expressed in terms of cardinal numbers?
|
Let $K$ and $L$ be sets. What does $\mathop{\text{card}}(K \cup L)$ evaluate to?
|
||||||
Back: N/A. $K$ and $L$ must be *disjoint* sets for this to make sense.
|
Back: N/A. $K$ and $L$ must be disjoint sets for evaluation to make sense.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439139-->
|
<!--ID: 1733710439139-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K$ and $L$ be disjoint sets. How is $\mathop{\text{card}}(K \cup L)$ expressed in terms of cardinal numbers?
|
Let $K$ and $L$ be disjoint sets. What does $\mathop{\text{card}}(K \cup L)$ evaluate to?
|
||||||
Back: As $\kappa + \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
Back: As $\kappa + \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439142-->
|
<!--ID: 1733710439142-->
|
||||||
|
@ -672,6 +672,30 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1733710439150-->
|
<!--ID: 1733710439150-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How do we prove $2 + 2 = 4$ using the recursion theorem?
|
||||||
|
Back: By proving $A_2(2) = 2^{++} = 4$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219320-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How do we prove $2 + 2 = 4$ using cardinal numbers?
|
||||||
|
Back: By proving for disjoint sets $K \approx 2$ and $L \approx 2$, that $K \cup L \approx 4$ holds.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219323-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $m, n \in \omega$. What does $m + n$ evaluate to in terms of cardinal numbers?
|
||||||
|
Back: $\mathop{\text{card}}((m \times \{0\}) \cup (n \times \{1\}))$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219325-->
|
||||||
|
END%%
|
||||||
|
|
||||||
### Multiplication
|
### Multiplication
|
||||||
|
|
||||||
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa \cdot \lambda = \mathop{\text{card}}(K \times L)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
|
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa \cdot \lambda = \mathop{\text{card}}(K \times L)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
|
||||||
|
@ -686,7 +710,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K$ and $L$ be sets. How is $\mathop{\text{card}}(K \times L)$ expressed in terms of cardinal numbers?
|
Let $K$ and $L$ be sets. What does $\mathop{\text{card}}(K \times L)$ evaluate to?
|
||||||
Back: As $\kappa \cdot \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
Back: As $\kappa \cdot \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439156-->
|
<!--ID: 1733710439156-->
|
||||||
|
@ -707,6 +731,30 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1733710439162-->
|
<!--ID: 1733710439162-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How do we prove $2 \cdot 2 = 4$ using the recursion theorem?
|
||||||
|
Back: By proving $M_2(2) = 2 + 2 = 4$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219326-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How do we prove $2 \cdot 2 = 4$ using cardinal numbers?
|
||||||
|
Back: By proving for sets $K \approx 2$ and $L \approx 2$, that $K \times L \approx 4$ holds.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219327-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $m, n \in \omega$. What does $m \cdot n$ evaluate to in terms of cardinal numbers?
|
||||||
|
Back: $\mathop{\text{card}}(m \times n)$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219328-->
|
||||||
|
END%%
|
||||||
|
|
||||||
### Exponentiation
|
### Exponentiation
|
||||||
|
|
||||||
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa^\lambda = \mathop{\text{card}}(^LK)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
|
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa^\lambda = \mathop{\text{card}}(^LK)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
|
||||||
|
@ -721,7 +769,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $K$ and $L$ be sets. How is $\mathop{\text{card}}(^LK)$ expressed in terms of cardinal numbers?
|
Let $K$ and $L$ be sets. What does $\mathop{\text{card}}(^LK)$ evaluate to?
|
||||||
Back: As $\kappa^\lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
Back: As $\kappa^\lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1733710439168-->
|
<!--ID: 1733710439168-->
|
||||||
|
@ -750,6 +798,30 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1733710439174-->
|
<!--ID: 1733710439174-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How do we prove $2^2 = 4$ using the recursion theorem?
|
||||||
|
Back: By proving $E_2(2) = 2 \cdot 2 = 4$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219330-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How do we prove $2^2 = 4$ using cardinal numbers?
|
||||||
|
Back: By proving for sets $K \approx 2$ and $L \approx 2$, that $^LK \approx 4$ holds.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219331-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $m, n \in \omega$. What does $m^n$ evaluate to in terms of cardinal numbers?
|
||||||
|
Back: $\mathop{\text{card}}(^nm)$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1734374219332-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Loading…
Reference in New Issue