Heaps and science of programming notes.
parent
9ee37c8b7d
commit
d04bd101ad
|
@ -114,7 +114,9 @@
|
|||
"nearly-complete-tree.png",
|
||||
"non-nearly-complete-tree.png",
|
||||
"perfect-tree.png",
|
||||
"non-complete-tree.png"
|
||||
"non-complete-tree.png",
|
||||
"max-heap-tree.png",
|
||||
"max-heap-array.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -153,7 +155,7 @@
|
|||
"_journal/2024-02-02.md": "a3b222daee8a50bce4cbac699efc7180",
|
||||
"_journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb",
|
||||
"_journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970",
|
||||
"logic/equiv-trans.md": "5d68be4120e7f79e12c35fafeddaf1a1",
|
||||
"logic/equiv-trans.md": "63515dfd471653bc0c8bc4eca66ccaf8",
|
||||
"_journal/2024-02-07.md": "8d81cd56a3b33883a7706d32e77b5889",
|
||||
"algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2",
|
||||
"algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9",
|
||||
|
@ -201,7 +203,7 @@
|
|||
"_journal/2024-02/2024-02-14.md": "aa009f9569e175a8104b0537ebcc5520",
|
||||
"_journal/2024-02-16.md": "5cc129254afd553829be3364facd23db",
|
||||
"_journal/2024-02/2024-02-15.md": "16cb7563d404cb543719b7bb5037aeed",
|
||||
"algebra/floor-ceiling.md": "ffffdd893398da842be2e4337c16bbf7",
|
||||
"algebra/floor-ceiling.md": "412e4fdc424cb17fd818688857c4b5b3",
|
||||
"algebra/index.md": "90b842eb694938d87c7c68779a5cacd1",
|
||||
"algorithms/binary-search.md": "8533a05ea372e007ab4e8a36fd2772a9",
|
||||
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||
|
@ -245,7 +247,7 @@
|
|||
"filesystems/cas.md": "d41c0d2e943adecbadd10a03fd1e4274",
|
||||
"git/objects.md": "c6b7e6a26666386790d25d4ece38175d",
|
||||
"git/index.md": "83d2d95fc549d9e8436946c7bd058d15",
|
||||
"encoding/integer.md": "73c42283ff8c3a1d4efb9f9644a4cf3b",
|
||||
"encoding/integer.md": "2ab21152b9468f547ebee496e03bc410",
|
||||
"_journal/2024-02-29.md": "f610f3caed659c1de3eed5f226cab508",
|
||||
"_journal/2024-02/2024-02-28.md": "7489377c014a2ff3c535d581961b5b82",
|
||||
"_journal/2024-03-01.md": "a532486279190b0c12954966cbf8c3fe",
|
||||
|
@ -315,7 +317,7 @@
|
|||
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
||||
"x86-64/instructions.md": "d783bad8dd77748fb412715541cb844d",
|
||||
"git/refs.md": "954fc69004aa65b358ec5ce07c1435ce",
|
||||
"set/trees.md": "6c1a245f6b25838c519f5c9bcf96c369",
|
||||
"set/trees.md": "0d21b947917498f107da140cc9fb93a7",
|
||||
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
||||
"_journal/2024-03/2024-03-23.md": "ad4e92cc2bf37f174a0758a0753bf69b",
|
||||
"_journal/2024-03/2024-03-22.md": "a509066c9cd2df692549e89f241d7bd9",
|
||||
|
@ -371,7 +373,19 @@
|
|||
"_journal/2024-04/2024-04-23.md": "20514052da91b06b979cacb3da758837",
|
||||
"_journal/2024-04-25.md": "10c98531cb90a6bc940ea7ae3342f98b",
|
||||
"_journal/2024-04/2024-04-24.md": "4cb04e0dea56e0b471fc0e428471a390",
|
||||
"algorithms/heaps.md": "4235ec90b6e251fc992906e0f1fe69e7"
|
||||
"algorithms/heaps.md": "b12c70ec85e514ce912821d133d116d4",
|
||||
"_journal/2024-04-26.md": "3ce37236a9e09e74b547a4f7231df5f0",
|
||||
"_journal/2024-04/2024-04-25.md": "5a81123af29f8ebf0a0d28f820a3a52e",
|
||||
"_journal/2024-04-28.md": "46726bf76a594b987c63ba8b9b6d13d3",
|
||||
"_journal/2024-04/2024-04-27.md": "b0f3753821c232bf819b00fb49415bd0",
|
||||
"_journal/2024-04/2024-04-26.md": "3ce37236a9e09e74b547a4f7231df5f0",
|
||||
"algorithms/sorting/heapsort.md": "e0d368882a8f33d2f42bd3ead4e3914d",
|
||||
"_journal/2024-04-29.md": "7888f4e9497c9d8bd6f4aa759d9abc4d",
|
||||
"_journal/2024-04/2024-04-28.md": "b34a9fe3bccb1f224b96ca00e78ad061",
|
||||
"programming/assertions.md": "bdef9b934d8db94169d6befbc02f33d2",
|
||||
"programming/text-sub.md": "003b8c32ae2f6767cb0d900f85196e67",
|
||||
"programming/equiv-trans.md": "fbadd593688e364ea92f74f23e54bcfc",
|
||||
"programming/index.md": "bb082325e269a95236aa6aff9307fe59"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
---
|
||||
title: "2024-04-29"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Interview Prep (1 Practice Problem)
|
||||
- [x] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Notes on chapter 5.3 of "The Science of Programming". Covered nested arrays.
|
||||
* Read chapter 6 of "The Science of Programming". Still need to convert into notes though.
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-04-26"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Interview Prep (1 Practice Problem)
|
||||
- [x] Log Work Hours (Max 3 hours)
|
|
@ -0,0 +1,14 @@
|
|||
---
|
||||
title: "2024-04-27"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Interview Prep (1 Practice Problem)
|
||||
- [ ] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Hide-and-Seek Application
|
||||
* Finished most game logic. Began working on theming.
|
|
@ -0,0 +1,18 @@
|
|||
---
|
||||
title: "2024-04-28"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Interview Prep (1 Practice Problem)
|
||||
- [x] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Hide-and-Seek Application
|
||||
* Added booting and teardown game server logic.
|
||||
* Begin theming according to Fort Collins vendor guidelines.
|
||||
* Notes on chapter 5.2 in "The Science of Programming".
|
||||
* Notes on floor/ceiling identities associated with complete $k$-ary trees.
|
||||
* Start adding notes/flashcards on heaps and heapsort.
|
|
@ -157,7 +157,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
What C operator corresponds to ceiling division?
|
||||
Back: None.
|
||||
Back: N/A.
|
||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||
<!--ID: 1708110779716-->
|
||||
END%%
|
||||
|
@ -352,6 +352,136 @@ Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete M
|
|||
<!--ID: 1708115683366-->
|
||||
END%%
|
||||
|
||||
## Identities
|
||||
|
||||
For integers $x$ and $y > 0$, $$\begin{align*} \left\lfloor \frac{x}{y} \right\rfloor & = \left\lceil \frac{x}{y} - \frac{y - 1}{y} \right\rceil \\ \left\lceil \frac{x}{y} \right\rceil & = \left\lfloor \frac{x}{y} + \frac{y - 1}{y} \right\rfloor \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $n$ is even, what integer value does $\lfloor n / 2 \rfloor$ evaluate to?
|
||||
Back: $n / 2$
|
||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||
<!--ID: 1714182124789-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $n$ is odd, what integer value does $\lfloor n / 2 \rfloor$ evaluate to?
|
||||
Back: $(n - 1) / 2$
|
||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||
<!--ID: 1714182124796-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $n$ is even, what integer value does $\lceil n / 2 \rceil$ evaluate to?
|
||||
Back: $n / 2$
|
||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||
<!--ID: 1714182124804-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $n$ is odd, what integer value does $\lceil n / 2 \rceil$ evaluate to?
|
||||
Back: $(n + 1) / 2$
|
||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||
<!--ID: 1714182124809-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given integers $x$ and $y > 0$, what value of $Bias$ satisfies the following identity? $$\left\lceil \frac{x}{y} \right\rceil = \left\lfloor \frac{x}{y} + Bias \right\rfloor$$
|
||||
Back: $(y - 1) / y$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714182124840-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given integers $x$ and $y > 0$, what value of $Bias$ satisfies the following identity? $$\left\lceil \frac{x}{y} \right\rceil = \left\lfloor \frac{x + Bias}{y} \right\rfloor$$
|
||||
Back: $(y - 1)$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714184300367-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given integers $x$ and $y > 0$, what operator satisfies the following identity? $$\left\lceil \frac{x}{y} \right\rceil = \left\lfloor \frac{x}{y} \;\square\; \frac{y - 1}{y} \right\rfloor$$
|
||||
Back: $+$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714182124853-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What intuition explains why the following identity holds for integers $x$ and $y > 0$? $$\left\lceil \frac{x}{y} \right\rceil = \left\lfloor \frac{x}{y} + \frac{y - 1}{y} \right\rfloor$$
|
||||
Back: $(y - 1) / y$ only affects the RHS if and only if $x / y$ is not an integer.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714182124860-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given integers $x$ and $y > 0$, what value of $Bias$ satisfies the following identity? $$\left\lfloor \frac{x}{y} \right\rfloor = \left\lceil \frac{x}{y} - Bias \right\rceil$$
|
||||
Back: $(y - 1) / y$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714182124874-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given integers $x$ and $y > 0$, what value of $Bias$ satisfies the following identity? $$\left\lfloor \frac{x}{y} \right\rfloor = \left\lceil \frac{x - Bias}{y} \right\rceil$$
|
||||
Back: $(y - 1)$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714184300372-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given integers $x$ and $y > 0$, what operator satisfies the following identity? $$\left\lfloor \frac{x}{y} \right\rfloor = \left\lceil \frac{x}{y} \;\square\; \frac{y - 1}{y} \right\rceil$$
|
||||
Back: $-$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714182124867-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What intuition explains why the following identity holds for integers $x$ and $y > 0$? $$\left\lfloor \frac{x}{y} \right\rfloor = \left\lceil \frac{x}{y} - \frac{y - 1}{y} \right\rceil$$
|
||||
Back: $(y - 1) / y$ only affects the RHS if and only if $x / y$ is not an integer.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714182124884-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For any integer $n$, floor expression {$\lfloor n / 2 \rfloor$} is equal to ceiling expression {$\lceil (n - 1) / 2 \rceil$}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714349367669-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For any integer $n$, ceiling expression {$\lceil n / 2 \rceil$} is equal to floor expression {$\lfloor (n + 1) / 2 \rfloor$}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714349367676-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What identity generalizes the following? $$\left\lfloor \frac{n}{2} \right\rfloor = \left\lceil \frac{n - 1}{2} \right\rceil$$
|
||||
Back: $$\left\lfloor \frac{n}{d} \right\rfloor = \left\lceil \frac{n - (d - 1)}{d} \right\rceil$$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714349367682-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What identity generalizes the following? $$\left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n + 1}{2} \right\rfloor$$
|
||||
Back: $$\left\lceil \frac{n}{d} \right\rceil = \left\lfloor \frac{n + (d - 1)}{d} \right\rfloor$$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714349367688-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
|
|
|
@ -9,4 +9,144 @@ tags:
|
|||
|
||||
## Overview
|
||||
|
||||
TODO
|
||||
The **binary heap** data structure is an array object that can be viewed as a [[trees#Positional Trees|complete binary tree]].
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A binary heap is an {array} that can be viewed as a {binary tree}.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379014-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a valid binary heap?
|
||||
![[perfect-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379021-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a valid binary heap?
|
||||
![[complete-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379024-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a valid binary heap?
|
||||
![[non-complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379030-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why can't the following be a binary heap?
|
||||
![[non-complete-tree.png]]
|
||||
Back: A heap is equivalently viewed as a *complete* binary tree.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379034-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two sizes are associated with binary heaps?
|
||||
Back: The number of valid elements and the size of the underlying array.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379038-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the two kinds of binary heaps?
|
||||
Back: Max-heaps and min-heaps.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379042-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the max-heap property?
|
||||
Back: Every parent node is greater than or equal to its children in value.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379046-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Where is the largest element of a max-heap?
|
||||
Back: At the root.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379052-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Where is the smallest element of a max-heap?
|
||||
Back: At the leaves.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379059-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the min-heap property?
|
||||
Back: Every parent node is less than or equal to its children in value.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379072-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Where is the smallest element of a min-heap?
|
||||
Back: At the root.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379077-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Where is the largest element of a min-heap?
|
||||
Back: At the leaves.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379083-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the following binary heap viewed as an array?
|
||||
![[max-heap-tree.png]]
|
||||
Back:
|
||||
![[max-heap-array.png]]
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356379065-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the following binary heap instead viewed as a binary tree?
|
||||
![[max-heap-array.png]]
|
||||
Back:
|
||||
![[max-heap-tree.png]]
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356442370-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of binary heap is the following?
|
||||
![[max-heap-array.png]]
|
||||
Back: A max-heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714356546616-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Binary file not shown.
After Width: | Height: | Size: 7.0 KiB |
Binary file not shown.
After Width: | Height: | Size: 5.8 KiB |
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
|
@ -0,0 +1,64 @@
|
|||
---
|
||||
title: Heapsort
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algorithm::sorting
|
||||
tags:
|
||||
- algorithm
|
||||
- sorting
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Property | Value
|
||||
----------- | --------
|
||||
Best Case | -
|
||||
Worst Case | -
|
||||
Avg. Case | -
|
||||
Aux. Memory | -
|
||||
Stable | -
|
||||
Adaptive | -
|
||||
|
||||
![[heapsort.gif]]
|
||||
|
||||
```c
|
||||
inline int left_child(int i) { return (i << 1) + 1; }
|
||||
inline int right_child(int i) { return (i << 1) + 2; }
|
||||
|
||||
void max_heapify(int n, int H[static n], int i) {
|
||||
while (true) {
|
||||
int lc = left_child(i);
|
||||
int rc = right_child(i);
|
||||
int next = i;
|
||||
|
||||
if (lc < n && H[next] < H[lc]) {
|
||||
next = lc;
|
||||
}
|
||||
if (rc < n && H[next] < H[rc]) {
|
||||
next = rc;
|
||||
}
|
||||
if (next == i) {
|
||||
return;
|
||||
}
|
||||
swap(H, i, next);
|
||||
i = next;
|
||||
}
|
||||
}
|
||||
|
||||
void build_max_heap(int n, int H[static n]) {
|
||||
for (int i = n / 2 - 1; i >= 0; --i) {
|
||||
max_heapify(n, H, i);
|
||||
}
|
||||
}
|
||||
|
||||
void heapsort(int n, int H[static n]) {
|
||||
build_max_heap(n, H);
|
||||
while (n > 1) {
|
||||
swap(A, 0, --n);
|
||||
max_heapify(n, A, 0);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
@ -2114,6 +2114,67 @@ Tags: c17
|
|||
<!--ID: 1709831032461-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assuming no overflow, rewrite expression `x >> k` to instead yield $\lceil x / 2^k \rceil$.
|
||||
Back: `(x + (1 << k) - 1) >> k`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1714184300343-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assuming no overflow, what is the result of `(x + (1 << k) - 1) >> k`?
|
||||
Back: $\lceil x / 2^k \rceil$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1714184300349-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What value of $Bias$ satisfies the following identity? $$\left\lceil \frac{x}{2^k} \right\rceil = \left\lfloor \frac{x}{2^k} + Bias \right\rfloor$$
|
||||
Back: $(2^k - 1) / 2^k$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714184300352-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What value of $Bias$ satisfies the following identity? $$\left\lceil \frac{x}{2^k} \right\rceil = \left\lfloor \frac{x + Bias}{2^k} \right\rfloor$$
|
||||
Back: $2^k - 1$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1714184300355-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What floor/ceiling identity does expression `(x + (1 << k) - 1) >> k` exploit?
|
||||
Back: $$\left\lceil \frac{x}{y} \right\rceil = \left\lfloor \frac{x + y - 1}{y} \right\rfloor$$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1714184300359-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In two's-complement, how do we use `>>` to perform integer division of `x > 0` by $2^k$?
|
||||
Back: `x >> k`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1714184300362-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In two's-complement, how do we use `>>` to perform integer division of `x < 0` by $2^k$?
|
||||
Back: `(x + (1 << k) - 1) >> k`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1714184300364-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
|
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
title: Assertions
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: programming::assertions
|
||||
tags:
|
||||
- assertions
|
||||
- programming
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
TODO
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|
@ -0,0 +1,547 @@
|
|||
---
|
||||
title: Equivalence Transformation
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: programming::equiv-trans
|
||||
tags:
|
||||
- equiv-trans
|
||||
- logic
|
||||
- programming
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
**Equivalence-transformation** refers to a class of calculi for [[propositional|propositional logic]] derived from negation ($\neg$), conjunction ($\land$), disjunction ($\lor$), implication ($\Rightarrow$), and equality ($=$). Gries covers two in "The Science of Programming": a system of evaluation and a formal system. The system of evaluation mirrors how a computer processes instructions, at least in an abstract sense. The formal system serves as a theoretical framework for reasoning about propositions and their transformations without resorting to "lower-level" operations like substitution.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Who is the author of "The Science of Programming"?
|
||||
Back: David Gries
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861286-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are constant propositions?
|
||||
Back: Propositions that contain only constants as operands.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707422675517-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Gries replaces logical operator {$\Leftrightarrow$} in favor of {$=$}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861295-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How does Lean define propositional equality?
|
||||
Back: Expressions `a` and `b` are propositionally equal iff `a = b` is true.
|
||||
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
||||
Tags: lean
|
||||
<!--ID: 1706994861298-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How does Lean define `propext`?
|
||||
Back:
|
||||
```lean
|
||||
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
|
||||
```
|
||||
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
||||
Tags: lean
|
||||
<!--ID: 1706994861300-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What Lean theorem justifies Gries' choice of $=$ over $\Leftrightarrow$?
|
||||
Back: `propext`
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
Tags: lean
|
||||
<!--ID: 1706994861302-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $(b \land c)$ well-defined in $\{(b, T), (c, F)\}$?
|
||||
Back: Yes.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861318-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $(b \lor d)$ well-defined in $\{(b, T), (c, F)\}$?
|
||||
Back: No.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861320-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What proposition represents states $\{(b, T)\}$ and $\{(c, F)\}$?
|
||||
Back: $b \lor \neg c$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861337-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set of states does $a \land b$ represent?
|
||||
Back: The set containing just state $\{(a, T), (b, T)\}$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861339-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is sloppy about phrase "the states in $b \lor \neg c$"?
|
||||
Back: $b \lor \neg c$ is not a set but a representation of a set (of states).
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861341-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the weakest proposition?
|
||||
Back: $T$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861348-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set of states does $T$ represent?
|
||||
Back: The set of all states.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861350-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the strongest proposition?
|
||||
Back: $F$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861352-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set of states does $F$ represent?
|
||||
Back: The set of no states.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861354-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does a proposition *represent*?
|
||||
Back: The set of states in which it is true.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861335-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When is $p$ stronger than $q$?
|
||||
Back: When $p \Rightarrow q$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861343-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When is $p$ weaker than $q$?
|
||||
Back: When $q \Rightarrow p$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861346-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A proposition is well-defined with respect to what?
|
||||
Back: A state to evaluate against.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861316-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is $b \land c$ stronger than $b \lor c$?
|
||||
Back: The former represents a subset of the states the latter represents.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861356-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a state?
|
||||
Back: A function mapping identifiers to values.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861314-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the two calculi Gries describes equivalence-transformation with?
|
||||
Back: A formal system and a system of evaluation.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673342-->
|
||||
END%%
|
||||
|
||||
## Equivalence Schemas
|
||||
|
||||
A proposition is said to be a **tautology** if it evaluates to $T$ in every state it is well-defined in. We say propositions $E1$ and $E2$ are **equivalent** if $E1 = E2$ is a tautology. In this case, we say $E1 = E2$ is an **equivalence**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a proposition to be a tautology?
|
||||
Back: That the proposition is true in every state it is well-defined in.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861323-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is tautology $e$ written equivalently with a quantifier?
|
||||
Back: For free identifiers $i_1, \ldots, i_n$ in $e$, as $\forall (i_1, \ldots, i_n), e$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707937867032-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The term "equivalent" refers to a comparison between what two objects?
|
||||
Back: Expressions.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673345-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for two propositions to be equivalent?
|
||||
Back: Given propositions $E1$ and $E2$, it means $E1 = E2$ is a tautology.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673347-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is an equivalence?
|
||||
Back: Given propositions $E1$ and $E2$, tautology $E1 = E2$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673348-->
|
||||
END%%
|
||||
|
||||
* Commutative Laws
|
||||
* $(E1 \land E2) = (E2 \land E1)$
|
||||
* $(E1 \lor E2) = (E2 \lor E1)$
|
||||
* $(E1 = E2) = (E2 = E1)$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of the basic logical operators do the commutative laws apply to?
|
||||
Back: $\land$, $\lor$, and $=$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673350-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the commutative laws allow us to do?
|
||||
Back: Reorder operands.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673351-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the commutative law of e.g. $\land$?
|
||||
Back: $E1 \land E2 = E2 \land E1$
|
||||
<!--ID: 1707251673353-->
|
||||
END%%
|
||||
|
||||
* Associative Laws
|
||||
* $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$
|
||||
* $E1 \lor (E2 \lor E3) = (E1 \lor E2) \lor E3$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of the basic logical operators do the associative laws apply to?
|
||||
Back: $\land$ and $\lor$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673354-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the associative laws allow us to do?
|
||||
Back: Remove parentheses.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673355-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the associative law of e.g. $\land$?
|
||||
Back: $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673357-->
|
||||
END%%
|
||||
|
||||
* Distributive Laws
|
||||
* $E1 \lor (E2 \land E3) = (E1 \lor E2) \land (E1 \lor E3)$
|
||||
* $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of the basic logical operators do the distributive laws apply to?
|
||||
Back: $\land$ and $\lor$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673358-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the distributive laws allow us to do?
|
||||
Back: "Factor" propositions.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673360-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the distributive law of e.g. $\land$ over $\lor$?
|
||||
Back: $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673361-->
|
||||
END%%
|
||||
|
||||
* De Morgan's Laws
|
||||
* $\neg (E1 \land E2) = \neg E1 \lor \neg E2$
|
||||
* $\neg (E1 \lor E2) = \neg E1 \land \neg E2$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of the basic logical operators do De Morgan's Laws apply to?
|
||||
Back: $\neg$, $\land$, and $\lor$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673363-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is De Morgan's Law of e.g. $\land$?
|
||||
Back: $\neg (E1 \land E2) = \neg E1 \lor \neg E2$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673364-->
|
||||
END%%
|
||||
|
||||
* Law of Negation
|
||||
* $\neg (\neg E1) = E1$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the Law of Negation say?
|
||||
Back: $\neg (\neg E1) = E1$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673365-->
|
||||
END%%
|
||||
|
||||
* Law of the Excluded Middle
|
||||
* $E1 \lor \neg E1 = T$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of the basic logical operators does the Law of the Excluded Middle apply to?
|
||||
Back: $\lor$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673367-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the Law of the Excluded Middle say?
|
||||
Back: $E1 \lor \neg E1 = T$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673368-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which equivalence schema is "refuted" by sentence, "This sentence is false."
|
||||
Back: Law of the Excluded Middle
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251779153-->
|
||||
END%%
|
||||
|
||||
* Law of Contradiction
|
||||
* $E1 \land \neg E1 = F$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of the basic logical operators does the Law of Contradiction apply to?
|
||||
Back: $\land$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673370-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the Law of Contradiction say?
|
||||
Back: $E1 \land \neg E1 = F$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673371-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The Law of {1:the Excluded Middle} is to {2:$\lor$} whereas the Law of {2:Contradiction} is to {1:$\land$}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707251673373-->
|
||||
END%%
|
||||
|
||||
Gries lists other "Laws" but they don't seem as important to note here.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\Rightarrow$ written in terms of other logical operators?
|
||||
Back: $p \Rightarrow q$ is equivalent to $\neg p \lor q$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861358-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\Leftrightarrow$/$=$ written in terms of other logical operators?
|
||||
Back: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1706994861360-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes an equality from an equivalence?
|
||||
Back: An equivalence is an equality that is also a tautology.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707316178709-->
|
||||
END%%
|
||||
|
||||
## Equivalence Rules
|
||||
|
||||
* Rule of Substitution
|
||||
* Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
|
||||
* Rule of Transitivity
|
||||
* Let $E1 = E2$ and $E2 = E3$ be equivalences. Then $E1 = E3$ is an equivalence.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two inference rules make up the equivalence-transformation formal system?
|
||||
Back: Substitution and transitivity.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707253246450-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of the two inference rules that make up the equivalence-transformation formal system is redundant?
|
||||
Back: Transitivity.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707432641598-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the rule of substitution say in the system of evaluation?
|
||||
Back: Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707253246452-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the rule of substitution written as an inference rule (in standard form)?
|
||||
Back:
|
||||
$$
|
||||
\begin{matrix}
|
||||
E1 = E2 \\
|
||||
\hline P(E1) = P(E2)
|
||||
\end{matrix}
|
||||
$$
|
||||
<!--ID: 1707253246454-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the rule of transitivity state in the system of evaluation?
|
||||
Back: Let $E1 = E2$ and $E2 = E3$. Then $E1 = E3$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707253246455-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the rule of transitivity written as an inference rule (in standard form)?
|
||||
Back:
|
||||
$$
|
||||
\begin{matrix}
|
||||
E1 = E2, E2 = E3 \\
|
||||
\hline E1 = E3
|
||||
\end{matrix}
|
||||
$$
|
||||
<!--ID: 1707253246457-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The system of evaluation has {equivalences} whereas the formal system has {theorems}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707253246458-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a "theorem" in the equivalence-transformation formal system?
|
||||
Back: An equivalence derived from the axioms and inference rules.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707316178712-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is e.g. the Law of Implication proven in the system of evaluation?
|
||||
Back: With truth tables
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707316178714-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is e.g. the Law of Implication proven in the formal system?
|
||||
Back: It isn't. It is an axiom.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707316178715-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The system of evaluation and formal system are connected by the following biconditional: {$e$ is a tautology} iff {$e = T$ is a theorem}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707316178717-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:system of evaluation} is to {2:"$e$ is a tautology"} whereas the {2:formal system} is to {1:"$e = T$ is a theorem"}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707316276203-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|
@ -0,0 +1,5 @@
|
|||
---
|
||||
title: Programming
|
||||
tags:
|
||||
- programming
|
||||
---
|
File diff suppressed because it is too large
Load Diff
|
@ -960,7 +960,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a $k$-ary tree to be complete?
|
||||
Back: The last level is not filled but all leaves have the same depth and are leftmost arranged.
|
||||
Back: All levels, except maybe the last, are filled. All leaves have the same depth and are leftmost arranged.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353480-->
|
||||
END%%
|
||||
|
@ -989,6 +989,86 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1714082676022-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many internal nodes are in a complete $k$-ary tree of $n$ nodes?
|
||||
Back: $\lceil (n - 1) / k \rceil$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367630-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What value of $k$ is used in the following description of a complete $k$-ary tree?
|
||||
$$\begin{array}{c|c|c}
|
||||
n & \text{external} & \text{internal} \\
|
||||
\hline
|
||||
1 & 1 & 0 \\
|
||||
2 & 1 & 1 \\
|
||||
3 & 2 & 1 \\
|
||||
4 & 3 & 1 \\
|
||||
5 & 4 & 1 \\
|
||||
6 & 4 & 2 \\
|
||||
7 & 5 & 2 \\
|
||||
8 & 6 & 2
|
||||
\end{array}$$
|
||||
Back: $4$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367637-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What value of $k$ is used in the following description of a complete $k$-ary tree?
|
||||
$$\begin{array}{c|c|c}
|
||||
n & \text{external} & \text{internal} \\
|
||||
\hline
|
||||
1 & 1 & 0 \\
|
||||
2 & 1 & 1 \\
|
||||
3 & 2 & 1 \\
|
||||
4 & 2 & 2 \\
|
||||
5 & 3 & 2 \\
|
||||
6 & 3 & 3 \\
|
||||
7 & 4 & 3 \\
|
||||
8 & 4 & 4
|
||||
\end{array}$$
|
||||
Back: $2$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367640-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When does the number of external nodes increment in a growing $k$-ary tree?
|
||||
Back: When the next node added already has a sibling.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367644-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When does the number of external nodes remain static in a growing $k$-ary tree?
|
||||
Back: When the next node added has no sibling.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367647-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When does the number of internal nodes increment in a growing $k$-ary tree?
|
||||
Back: When the next node added has no sibling.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367651-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When does the number of internal nodes remain static in a growing $k$-ary tree?
|
||||
Back: When the next node added already has a sibling.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367655-->
|
||||
END%%
|
||||
|
||||
#### Binary Trees
|
||||
|
||||
A **binary tree** $T$ is a structure defined on a finite set of nodes that either
|
||||
|
@ -1165,7 +1245,7 @@ Is the following a perfect binary tree?
|
|||
![[perfect-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353484-->
|
||||
<!--ID: 1714180419777-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1174,7 +1254,7 @@ Is the following a complete binary tree?
|
|||
![[perfect-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353488-->
|
||||
<!--ID: 1714180419781-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1183,7 +1263,7 @@ Is the following a full binary tree?
|
|||
![[perfect-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438768-->
|
||||
<!--ID: 1714180419784-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1192,7 +1272,7 @@ Is the following a perfect binary tree?
|
|||
![[complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353491-->
|
||||
<!--ID: 1714180419787-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1201,7 +1281,7 @@ Is the following a complete binary tree?
|
|||
![[complete-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353495-->
|
||||
<!--ID: 1714180419789-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1210,7 +1290,7 @@ Is the following a full binary tree?
|
|||
![[complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438773-->
|
||||
<!--ID: 1714180419793-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1219,7 +1299,7 @@ Is the following a perfect binary tree?
|
|||
![[non-complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353498-->
|
||||
<!--ID: 1714180419802-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1228,7 +1308,7 @@ Is the following a complete binary tree?
|
|||
![[non-complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353502-->
|
||||
<!--ID: 1714180419809-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1237,7 +1317,7 @@ Is the following a full binary tree?
|
|||
![[non-complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438777-->
|
||||
<!--ID: 1714180419813-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -1366,6 +1446,14 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1712409466653-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many internal nodes are in a complete binary tree of $n$ nodes?
|
||||
Back: $\lceil (n - 1) / 2 \rceil = \lfloor n / 2 \rfloor$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714349367662-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
|
|
Loading…
Reference in New Issue