Index and function sets.
parent
65517ee3f8
commit
cd8d44a55e
|
@ -229,7 +229,7 @@
|
|||
"_journal/2024-02/2024-02-14.md": "aa009f9569e175a8104b0537ebcc5520",
|
||||
"_journal/2024-02-16.md": "5cc129254afd553829be3364facd23db",
|
||||
"_journal/2024-02/2024-02-15.md": "16cb7563d404cb543719b7bb5037aeed",
|
||||
"algebra/floor-ceiling.md": "aa89a485faeb7e71ef68da9200544184",
|
||||
"algebra/floor-ceiling.md": "a22efe853ad1234b2d3e0d7cc7e6fc47",
|
||||
"algebra/index.md": "90b842eb694938d87c7c68779a5cacd1",
|
||||
"algorithms/binary-search.md": "8533a05ea372e007ab4e8a36fd2772a9",
|
||||
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||
|
@ -460,7 +460,7 @@
|
|||
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c",
|
||||
"_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
||||
"hashing/direct-addressing.md": "f75cc22e74ae974fe4f568a2ee9f951f",
|
||||
"hashing/index.md": "378d86af6fe91fa93a6d9a6d8e52a1bf",
|
||||
"hashing/index.md": "e90b8e0eb7b93fda713c364027da71c2",
|
||||
"set/classes.md": "6776b4dc415021e0ef60b323b5c2d436",
|
||||
"_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a",
|
||||
"_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
||||
|
@ -483,7 +483,7 @@
|
|||
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
|
||||
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
|
||||
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
||||
"algebra/set.md": "237c9817db3d26f247e81ceb6a86b97f",
|
||||
"algebra/set.md": "204dba5e6da6257c01440758c17d305c",
|
||||
"algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8",
|
||||
"git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb",
|
||||
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
|
||||
|
@ -537,7 +537,7 @@
|
|||
"set/functions.md": "4fd3388fb21c77e96c6cfb703f3ed153",
|
||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"lambda-calculus/beta-reduction.md": "5386403713b42ee1831d15c84de133ba",
|
||||
"lambda-calculus/beta-reduction.md": "e233c8352a8180d19f7b717946c379d1",
|
||||
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
|
||||
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
|
||||
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
|
||||
|
@ -589,7 +589,10 @@
|
|||
"_journal/2024-07-09.md": "00c357e9cfac6de17825b02fdbd00c80",
|
||||
"_journal/2024-07/2024-07-08.md": "03ed5604e680ac9742ee99ae4b1eee8b",
|
||||
"_journal/2024-07-10.md": "2bb3db1f506f4ec7726cb5f2ed2daf24",
|
||||
"_journal/2024-07/2024-07-09.md": "00c357e9cfac6de17825b02fdbd00c80"
|
||||
"_journal/2024-07/2024-07-09.md": "00c357e9cfac6de17825b02fdbd00c80",
|
||||
"_journal/2024-07-12.md": "247909b64d6b0dd7702d6a4482165c4d",
|
||||
"_journal/2024-07/2024-07-11.md": "298cc3688675ee669b5a51d545fd61b5",
|
||||
"_journal/2024-07/2024-07-10.md": "a0fe22d8be519bf435a5949999eeb4de"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-07-12"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on [[set#Index Sets|index sets]] and [[set#Function Sets|function sets]].
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-07-11"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -291,7 +291,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Given `A[p:q]` and $r = \lfloor (p + q) / 2 \rfloor$, what is the size of `A[p:r]` in terms of $n = q - p + 1$?
|
||||
Back: $\lceil n / 2 \rceil$.
|
||||
Back: $\lceil n / 2 \rceil$
|
||||
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
|
||||
<!--ID: 1708742467192-->
|
||||
END%%
|
||||
|
@ -299,7 +299,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Given `A[p:q]` and $r = \lfloor (p + q) / 2 \rfloor$, what is the size of `A[r+1:q]` in terms of $n = q - p + 1$?
|
||||
Back: $\lfloor n / 2 \rfloor$.
|
||||
Back: $\lfloor n / 2 \rfloor$
|
||||
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
|
||||
<!--ID: 1708742467198-->
|
||||
END%%
|
||||
|
|
|
@ -794,6 +794,304 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1718107987936-->
|
||||
END%%
|
||||
|
||||
## Index Sets
|
||||
|
||||
Let $I$ be a set, called the **index set**. Let $F$ be a [[functions|function]] whose domain includes $I$. Then we define $$\bigcup_{i \in I} F(i) = \bigcup\,\{F(i) \mid i \in I\}$$
|
||||
and, if $I \neq \varnothing$, $$\bigcap_{i \in I} F(i) = \bigcap\, \{F(i) \mid i \in I\}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name does $I$ go by in expression $\bigcup_{i \in I} F(i)$?
|
||||
Back: The "index set".
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492681-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\bigcup_{i \in I} F(i)$ alternatively denoted?
|
||||
Back: $\bigcup_{i \in I} F_i$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492687-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematic object is $I$ in expression $\bigcup_{i \in I} F(i)$?
|
||||
Back: A set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492690-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematic object is $F$ in expression $\bigcup_{i \in I} F(i)$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492693-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\bigcup_{i \in I} F_i$ alternatively denoted?
|
||||
Back: $\bigcup_{i \in I} F(i)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782592276-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematic object is $F$ in expression $\bigcup_{i \in I} F_i$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782592281-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the domain of $F$ assumed to be in expression $\bigcup_{i \in I} F(i)$?
|
||||
Back: Some superset of $I$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492696-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What condition must $I$ satisfy in expression $\bigcup_{i \in I} F(i)$?
|
||||
Back: N/A.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492699-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $I = \{0, 1, 2\}$. What does $\bigcup_{i \in I} F(i)$ evaluate to?
|
||||
Back: $F(0) \cup F(1) \cup F(2)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492702-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $I = \varnothing$. What does $\bigcup_{i \in I} F(i)$ evaluate to?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492705-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematic object is $F$ in expression $\bigcap_{i \in I} F(i)$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492709-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\bigcap_{i \in I} F(i)$ often alternatively denoted?
|
||||
Back: $\bigcap_{i \in I} F_i$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492712-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the domain of $F$ assumed to be in expression $\bigcap_{i \in I} F(i)$?
|
||||
Back: Some superset of $I$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492716-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What condition must $I$ satisfy in expression $\bigcap_{i \in I} F(i)$?
|
||||
Back: $I \neq \varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492720-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $I = \{0, 1, 2\}$. What does $\bigcap_{i \in I} F(i)$ evaluate to?
|
||||
Back: $F(0) \cap F(1) \cap F(2)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492724-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $I = \varnothing$. What does $\bigcap_{i \in I} F(i)$ evaluate to?
|
||||
Back: N/A. This is undefined.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782492727-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\bigcap_{i \in I} F_i$ alternatively denoted?
|
||||
Back: $\bigcap_{i \in I} F(i)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782592285-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematic object is $F$ in expression $\bigcap_{i \in I} F_i$?
|
||||
Back: A function.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782592288-->
|
||||
END%%
|
||||
|
||||
## Function Sets
|
||||
|
||||
For sets $A$ and $B$, the collection of functions $F$ from $A$ into $B$ is: $$^AB = \{F \mid F \colon A \rightarrow B\}$$
|
||||
$^AB$ is read as "$B$-pre-$A$". It is often written as $B^A$ instead.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For sets $A$ and $B$, how is set $B^A$ defined?
|
||||
Back: $\{F \mid F \colon A \rightarrow B\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782833225-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For sets $A$ and $B$, how is set $^AB$ defined?
|
||||
Back: $\{F \mid F \colon A \rightarrow B\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782923177-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For any function $F \colon A \rightarrow B$, $F$ is a subset of what other set?
|
||||
Back: $A \times B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782833233-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For any function $F \colon A \rightarrow B$, $F$ is a member of what other set?
|
||||
Back: $\mathscr{P}(A \times B)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782833236-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For sets $A$ and $B$, how is set $B^A$ pronounced?
|
||||
Back: As "$B$-pre-$A$".
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782923183-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why prefer notation $B^A$ over $^AB$?
|
||||
Back: The notation mirrors $|B|^{|A|}$, the number of elements in $B^A$ given both sets are finite.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607431-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For sets $A$ and $B$, how is set $^AB$ pronounced?
|
||||
Back: As "$B$-pre-$A$".
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782923193-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why prefer notation $^AB$ over $B^A$?
|
||||
Back: Because the sets are written left-to-right, from domain to codomain.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607434-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* is set $B^A$ denoted the way it is?
|
||||
Back: If $A$ and $B$ are finite, then $B^A$ has $|B|^{|A|}$ members.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720782923188-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the domain of $^\omega\{0, 1\}$?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607437-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the domain of a member of $^\omega\{0, 1\}$?
|
||||
Back: $\omega$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607440-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the range of $\{0, 1\}^\omega$?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607444-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the range of a member of $\{0, 1\}^\omega$?
|
||||
Back: $\{0, 1\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607448-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does $\varnothing^\varnothing$ evaluate to?
|
||||
Back: $\{\varnothing\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607451-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For $A \neq \varnothing$, what does $\varnothing^A$ evaluate to?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607455-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For $A \neq \varnothing$, *why* does $\varnothing^A = \varnothing$?
|
||||
Back: No function can map a nonempty domain to an empty range.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607459-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For $A \neq \varnothing$, what does $^\varnothing A$ evaluate to?
|
||||
Back: $\{\varnothing\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607463-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For $A \neq \varnothing$, *why* does $^\varnothing A = \{\varnothing\}$?
|
||||
Back: $\varnothing$ is the only function with empty domain.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720783607468-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -108,7 +108,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
What does a hash table collision refer to?
|
||||
Back: Two keys hashing to the same slot.
|
||||
Back: Two different keys hashing to the same slot.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180976-->
|
||||
END%%
|
||||
|
|
|
@ -559,7 +559,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
If a $\lambda$-term has $\beta$-normal forms $P$ and $Q$, what can be said about $P$ and $Q$?
|
||||
If a $\lambda$-term has $\beta$-normal forms $P$ and $Q$, how do $P$ and $Q$ relate to one another?
|
||||
Back: $P \equiv_\alpha Q$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1719577152610-->
|
||||
|
|
Loading…
Reference in New Issue