Additive and multiplicative principles.
parent
ae71557589
commit
cbca6f018b
notes
|
@ -165,9 +165,10 @@
|
|||
"algebra/floor-ceiling.md": "456fa31bedb9ec7c2fa1d6f75db81dec",
|
||||
"algebra/index.md": "90b842eb694938d87c7c68779a5cacd1",
|
||||
"algorithms/binary-search.md": "08cb6dc2dfb204a665d8e8333def20ca",
|
||||
"_journal/2024-02-17.md": "7c71a5ccb5b2f45cb93ef6c485e7b567",
|
||||
"_journal/2024-02-17.md": "0fad7bf64837646e1018885504d40f41",
|
||||
"_journal/2024-02/2024-02-16.md": "e701902e369ec53098fc2deed4ec14fd",
|
||||
"binary/integer-encoding.md": "a2c8c83a20f1124fd5af0f3c23894284"
|
||||
"binary/integer-encoding.md": "a2c8c83a20f1124fd5af0f3c23894284",
|
||||
"combinatorics/index.md": "c5b005bdce7ab01facfd614b00938ef2"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -5,11 +5,19 @@ title: "2024-02-17"
|
|||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] OGS (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [x] OGS (1 Life & Death Problem)
|
||||
- [x] Korean (Read 1 Story)
|
||||
- [ ] Interview Prep (1 Practice Problem)
|
||||
- [ ] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Began working through two's-complement and unsigned encoding.
|
||||
* Also added more notes on propositional logic.
|
||||
* Taking a step back from "Concrete Mathematics" to first read through "Discrete Mathematics: An Open Introduction".
|
||||
* 101weiqi problems (serial numbers)
|
||||
* Q-14584
|
||||
* Q-253960
|
||||
* Q-21834
|
||||
* Q-349936
|
||||
* Q-9812
|
||||
* Read 금도끼와 은도끼 (The Golden Ax and the Silver Ax).
|
||||
* Read through first section of "Discrete Mathematics: An Open Introduction". Add combinatorics notes.
|
|
@ -0,0 +1,89 @@
|
|||
---
|
||||
title: Combinatorics
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: combinatorics set
|
||||
tags:
|
||||
- combinatorics
|
||||
- set
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The **additive principle** states that two finite and disjoint sets $A$ and $B$ satisfy $$|A \cup B| = |A| + |B|$$
|
||||
|
||||
The **multiplicative principle** states that two finite sets $A$ and $B$ satisfy $$|A \times B| = |A| \cdot |B|$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the additive principle state?
|
||||
Back: Given finite and disjoint sets $A$ and $B$, $|A \cup B| = |A| + |B|$.
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738464-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the multiplicative principle state?
|
||||
Back: Given finite sets $A$ and $B$, $|A \times B| = |A| \cdot |B|$.
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738469-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The additive property applies to sets exhibiting what two properties?
|
||||
Back: Finiteness and disjointedness.
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738473-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The multiplicative property applies to sets exhibiting what property?
|
||||
Back: Finiteness.
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738477-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The additive principle is to {$\cup$} whereas the multiplicative principle is to {$\times$}.
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738480-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $A$ is finite, how is $A \times B$ rewritten as $|A|$ disjoint sets?
|
||||
Back: Given $A = \{a_1, \ldots, a_n\}$, $(\{a_1\} \times B) \cup \cdots \cup (\{a_n\} \times B)$.
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738483-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $B$ is finite, how is $A \times B$ rewritten as $|B|$ disjoint sets?
|
||||
Back: Given $B = \{b_1, \ldots, b_n\}$, $(A \times \{b_1\}) \cup \cdots \cup (A \times \{b_n\})$.
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738487-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How do we denote $A$ and $B$ are disjoint using standard set notation?
|
||||
Back: $A \cap B = \varnothing$
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738491-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the cartesian product $A \times B$ defined?
|
||||
Back: $A \times B = \{\langle x, y \rangle : x \in A \land y \in B\}$
|
||||
Reference: Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708217738494-->
|
||||
END%%
|
||||
|
||||
## References
|
||||
|
||||
* Oscar Levin, _Discrete Mathematics: An Open Introduction_, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
Loading…
Reference in New Issue