Complex numbers and the iterative command.
parent
a7a8abfe4d
commit
bb0b7f9fea
|
@ -241,7 +241,9 @@
|
|||
"state-diagram.png",
|
||||
"state-diagram-ends1.png",
|
||||
"state-diagram-ends0.png",
|
||||
"dfs-edge-classification.png"
|
||||
"dfs-edge-classification.png",
|
||||
"complex-plane-point.png",
|
||||
"iterative-command.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -417,7 +419,7 @@
|
|||
"_journal/2024-03/2024-03-15.md": "e54b2513beac5f46313b4c37622adf39",
|
||||
"_journal/2024-03-17.md": "72e99c7630085aee2c7f340a06b5ada7",
|
||||
"_journal/2024-03/2024-03-16.md": "ab7629c24ebe70838072cf6acec47cb0",
|
||||
"encoding/floating-point.md": "d19e3f992bf2e073d2049fb0973c89bd",
|
||||
"encoding/floating-point.md": "4deee7fd18a0efdf18fee993013ba4b0",
|
||||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
|
@ -544,7 +546,7 @@
|
|||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||
"git/remotes.md": "6fbbc95efa421c720e40500e5d133639",
|
||||
"programming/pred-trans.md": "c02471c6c9728dd19f8df7bc180ef8b1",
|
||||
"programming/pred-trans.md": "5b271eebe32e33108d7a36ad98600148",
|
||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05/2024-05-13.md": "d549dd75fb42b4280d4914781edb0113",
|
||||
|
@ -1047,7 +1049,7 @@
|
|||
"encoding/xml/index.md": "01a66b1a102cccc682f8f1cab0f50bc6",
|
||||
"ontology/reification.md": "ef8275957dcc1a7e5501722d4652e41c",
|
||||
"ontology/rdf.md": "fd273c30bec6f46b68547f0d392620b1",
|
||||
"data-models/rdf.md": "98594898837f981dcbdd26df80e93a87",
|
||||
"data-models/rdf.md": "122bad0fa8e2b299e75e744bc5c246d6",
|
||||
"serialization/xml.md": "84b632282ebcc2b6216923a02abdd4c2",
|
||||
"serialization/index.md": "5ed7e99e4efc4844839ea357d351f5d8",
|
||||
"data-models/index.md": "9e60f40798490f0743f291e55f492033",
|
||||
|
@ -1065,7 +1067,7 @@
|
|||
"_journal/2024-12/2024-12-23.md": "72b0964a8a5ed8ba0acf7fe10b5de279",
|
||||
"_journal/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
||||
"_journal/2024-12/2024-12-24.md": "dcd3bd8b82ca4d47a9642a46d8bece0d",
|
||||
"linkers/relocatable.md": "64c3c75dca8ec9676bd80a9a9feb7887",
|
||||
"linkers/relocatable.md": "31b5d8700a787e5aeee41f819864bcd9",
|
||||
"data-models/federation.md": "1d92747304186bd2833a00a488fcac48",
|
||||
"_journal/2024-12-26.md": "022aeaf68d46fd39b23aca9c577f3f41",
|
||||
"_journal/2024-12/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
||||
|
@ -1416,7 +1418,10 @@
|
|||
"_journal/2024/2024-12/2024-12-03.md": "54480a38f1e16e48529cbb99c5349c74",
|
||||
"_journal/2024/2024-12/2024-12-02.md": "beb50f6f3656470f2cb28b759b652994",
|
||||
"_journal/2024/2024-12/2024-12-01.md": "84987be103489d6447eba85726aa2489",
|
||||
"_journal/2025-01-01.md": "3cf29f753c27313c95a435a7845b4c13"
|
||||
"_journal/2025-01-01.md": "3cf29f753c27313c95a435a7845b4c13",
|
||||
"_journal/2025-01-02.md": "d836d831495d0646e7bf8c564579f9f1",
|
||||
"_journal/2025-01/2025-01-01.md": "3cf29f753c27313c95a435a7845b4c13",
|
||||
"algebra/complex.md": "37befb93643418cd8905c49e2f53627b"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
---
|
||||
title: "2025-01-02"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Add a number of basic facts about [[complex|complex numbers]].
|
||||
* Introductory notes on the [[pred-trans#Iterative|iterative command]].
|
|
@ -0,0 +1,246 @@
|
|||
---
|
||||
title: Complex Numbers
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algebra::complex
|
||||
tags:
|
||||
- algebra
|
||||
- complex
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The set $\mathbb{C}$ of **complex numbers** is defined by $$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\},$$
|
||||
where $i$ is the **imaginary number** defined as $i^2 = -1$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is set the complex numbers denoted?
|
||||
Back: As $\mathbb{C}$.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487309-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is set $\mathbb{C}$ defined in set-builder notation?
|
||||
Back: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487353-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of $\mathbb{R}$ or $\mathbb{C}$ is a subset of the other?
|
||||
Back: $\mathbb{R} \subseteq \mathbb{C}$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487367-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is $i$ called?
|
||||
Back: The imaginary number.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487383-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the imaginary number typically denoted?
|
||||
Back: As $i$.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487411-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
$i$ was invented to provide a solution to what equation?
|
||||
Back: $x^2 = -1$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487426-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the solution of $x^2 = -1$?
|
||||
Back: $i$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487437-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Real number {$r$} is identified with complex number {$r + 0i$}.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487452-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
What real number is identified with $-\pi + 0i$?
|
||||
Back: $-\pi$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487459-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
What real number is identified with $\pi + 2i$?
|
||||
Back: N/A.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487463-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the horizontal axis of the complex plane typically called?
|
||||
Back: The real axis.
|
||||
Reference: “Complex Plane,” in _Wikipedia_, December 14, 2024, [https://en.wikipedia.org/w/index.php?title=Complex_plane](https://en.wikipedia.org/w/index.php?title=Complex_plane&oldid=1263031649).
|
||||
<!--ID: 1735870487466-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the vertical axis of the complex plane typically called?
|
||||
Back: The imaginary axis.
|
||||
Reference: “Complex Plane,” in _Wikipedia_, December 14, 2024, [https://en.wikipedia.org/w/index.php?title=Complex_plane](https://en.wikipedia.org/w/index.php?title=Complex_plane&oldid=1263031649).
|
||||
<!--ID: 1735870487469-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The complex plane is formed from the {$x$}-axis and {$yi$}-axis.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487472-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which number is plotted on the complex plane below?
|
||||
![[complex-plane-point.png]]
|
||||
Back: $2 + i$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487475-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Real numbers are plotted on a {line} whereas complex numbers are plotted on a {plane}.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487478-->
|
||||
END%%
|
||||
|
||||
## Operations
|
||||
|
||||
Addition and multiplication of complex numbers are done in the natural way. Given complex numbers $a + bi$ and $c + di$, we have that $$\begin{align*} (a + bi) + (c + di) & = (a + c) + (b + d)i \\ (a + bi) \cdot (c + di) & = (ac -bd) + (ad + bc)i \end{align*}$$
|
||||
|
||||
The **absolute value** of $a + bi$, denoted $\lvert a + bi \rvert$, is defined as $$\lvert a + bi \rvert = \sqrt{a^2 + b^2}.$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $a + bi$ and $c + di$ be complex numbers. What is their sum?
|
||||
Back: $(a + c) + (b + d)i$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487481-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $a + bi$ and $c + di$ be complex numbers. What is their product?
|
||||
Back: $(ac - bd) + (ad + bc)i$
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487484-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is addition of complex numbers commutative?
|
||||
Back: Yes.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487487-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is addition of complex numbers associative?
|
||||
Back: Yes.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487491-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for addition of complex numbers to be commutative?
|
||||
Back: For $z_1, z_2 \in \mathbb{C}$, it follows that $z_1 + z_2 = z_2 + z_1$.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487494-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is multiplication of complex numbers commutative?
|
||||
Back: Yes.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487498-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is multiplication of complex numbers associative?
|
||||
Back: Yes.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487502-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for multiplication of complex numbers to be associative?
|
||||
Back: For $z_1, z_2, z_3 \in \mathbb{C}$, it follows that $z_1(z_2z_3) = (z_1z_2)z_3$.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870487506-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the absolute value of complex number $z \in \mathbb{C}$ denoted?
|
||||
Back: As $\lvert z \rvert$.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870829668-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $z \in \mathbb{C}$. How is $\lvert z \rvert$ defined?
|
||||
Back: Assuming $z = a + bi$, as $\lvert z \rvert = \sqrt{a^2 + b^2}$.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870829671-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Geometrically speaking, what does the absolute value of $z \in \mathbb{C}$ correspond to?
|
||||
Back: $z$'s distance from the complex plane's origin.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870829675-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $a + bi$ be a complex number. How is $\sqrt{a^2 + b^2}$ more compactly written?
|
||||
Back: As $\lvert a + bi \rvert$.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870829679-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What geometric theorem motivates the definition of complex numbers' absolute values?
|
||||
Back: The Pythagorean theorem.
|
||||
Reference: John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
||||
<!--ID: 1735870829684-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Complex Plane,” in _Wikipedia_, December 14, 2024, [https://en.wikipedia.org/w/index.php?title=Complex_plane](https://en.wikipedia.org/w/index.php?title=Complex_plane&oldid=1263031649).
|
||||
* John B. Fraleigh, _A First Course in Abstract Algebra_, Seventh edition, Pearson new international edition (Harlow: Pearson, 2014).
|
Binary file not shown.
After Width: | Height: | Size: 5.2 KiB |
|
@ -201,12 +201,12 @@ END%%
|
|||
|
||||
## Blank Nodes
|
||||
|
||||
A **blank node** (bnode) is a node in an RDF graph representing a resource for which a [[uri|URI]] is not specified. That is, the represented resource is anonymous. Such a node can only be used as a subject or object in an RDF triple.
|
||||
A **blank node** (bnode) is a node in an RDF graph representing a resource for which a [[uri|IRI]] is not specified. That is, the represented resource is anonymous. Such a node can only be used as a subject or object in an RDF triple.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a blank node?
|
||||
Back: A node in an RDF graph representing a resource with an unspecified URI.
|
||||
Back: A node in an RDF graph representing a resource with an unspecified IRI.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
<!--ID: 1735162429073-->
|
||||
END%%
|
||||
|
@ -214,7 +214,6 @@ END%%
|
|||
%%ANKI
|
||||
Cloze
|
||||
A {bnode} is shorthand for a {blank node}.
|
||||
Back: A node in an RDF graph representing a resource with an unspecified URI.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
<!--ID: 1735162429077-->
|
||||
END%%
|
||||
|
|
|
@ -850,6 +850,15 @@ Tags: c17
|
|||
<!--ID: 1710605798327-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let `float x = 1.0`. What does `x`'s exponent *value* equal?
|
||||
Back: $0$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1735827481751-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let `double x = 1.0`. What is the bit representation of `x`'s exponent *field*?
|
||||
|
|
|
@ -225,21 +225,23 @@ Basic
|
|||
What C variables are marked `COMMON` instead of put in `.bss`?
|
||||
Back: Global uninitialized variables.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1735343812827-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What C variables are put in `.bss` instead of marked `COMMON`?
|
||||
Back: Static variables or global variables initialized to zero.
|
||||
Back: Static variables and global variables initialized to zero.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1735343812828-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assuming `-fcommon`, what kind of C variables does the `.bss` section contain?
|
||||
Back: Static variables or global and static variables initialized to zero.
|
||||
Back: Static variables and global variables initialized to zero.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1735343812829-->
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 7.7 KiB |
|
@ -878,6 +878,14 @@ The general form of the **alternative command** is: $$\begin{align*} \textbf{if
|
|||
|
||||
Each $B_i \rightarrow S_i$ is called a **guarded command**. To execute the alternative command, find one true guard and execute the corresponding command. Notice this is nondeterministic. We denote the alternative command as $\text{IF}$ and define $\text{IF}$ in terms of $wp$ as: $$\begin{align*} wp(\text{IF}, R) = \;& (\forall i, 1 \leq i \leq n \Rightarrow domain(B_i)) \;\land \\ & (\exists i, 1 \leq i \leq n \land B_i) \;\land \\ & (\forall i, 1 \leq i \leq n \Rightarrow (B_i \Rightarrow wp(S_i, R))) \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The conventional `if` statement corresponds to what command?
|
||||
Back: The alternative command.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377633-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the alternative command compactly denoted?
|
||||
|
@ -960,6 +968,14 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
|
|||
<!--ID: 1722256906214-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose two guards of an alternative command is true. Which is chosen?
|
||||
Back: Either is permitted.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377661-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When *might* the following alternative command abort? $$\begin{align*} \textbf{if } & x > 0 \rightarrow z \coloneqq x \\ \textbf{ | } & x < 0 \rightarrow z \coloneqq -x \\ \textbf{fi } & \end{align*}$$
|
||||
|
@ -1015,6 +1031,98 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
|
|||
<!--ID: 1722259243640-->
|
||||
END%%
|
||||
|
||||
### Iterative
|
||||
|
||||
The general form of the **iterative command** is: $$\begin{align*} \textbf{do } & B_1 \rightarrow S_1 \\ \textbf{ | } & B_2 \rightarrow S_2 \\ & \quad\cdots \\ \textbf{ | } & B_n \rightarrow S_n \\ \textbf{od } & \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The conventional `while` statement corresponds to what command?
|
||||
Back: The iterative command.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377664-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:$\text{IF}$} is to the {2:alternative} command whereas {2:$\text{DO}$} is to the {1:iterative} command.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377667-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the iterative command compactly denoted?
|
||||
Back: As $\text{DO}$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377671-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of command is $\text{DO}$ a representation of?
|
||||
Back: An iterative command.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377674-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the general form of the iterative command?
|
||||
Back: $$\begin{align*} \textbf{do } & B_1 \rightarrow S_1 \\ \textbf{ | } & B_2 \rightarrow S_2 \\ & \quad\cdots \\ \textbf{ | } & B_n \rightarrow S_n \\ \textbf{od } & \end{align*}$$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377678-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How are iterative commands executed?
|
||||
Back: By repeatedly choosing any true guard and executing the corresponding command.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377683-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean to "perform an iteration" of an iterative command?
|
||||
Back: Choosing a true guard and executing its command.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377687-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what way is the iterative command's execution different from traditional loop statements?
|
||||
Back: It is nondeterministic.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377691-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose two guards of an iterative command is true. Which is chosen?
|
||||
Back: Either is permitted.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377695-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the following rewritten to have just one iterative guard? $$\begin{align*} \textbf{do } & B_1 \rightarrow S_1 \\ \textbf{ | } & B_2 \rightarrow S_2 \\ & \quad\cdots \\ \textbf{ | } & B_n \rightarrow S_n \\ \textbf{od } & \end{align*}$$
|
||||
Back: Given $BB = B_1 \lor \cdots \lor B_n$, as $$\begin{align*} \textbf{do } & BB \rightarrow \textbf{if } B_1 \rightarrow S_1 \\ & \quad\quad\quad \textbf{ | } B_2 \rightarrow S_2 \\ & \quad\quad\quad \quad\cdots \\ & \quad\quad\quad \textbf{ | } B_n \rightarrow S_n \\ & \quad\quad\quad \textbf{fi } \\ \textbf{od } & \end{align*}$$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873377699-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which command is demonstrated in the following diagram?
|
||||
![[iterative-command.png]]
|
||||
Back: The iterative command.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1735873599850-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
Loading…
Reference in New Issue