Additional heap/heapsort flashcards.
parent
d04bd101ad
commit
b800dc2ab8
|
@ -116,7 +116,9 @@
|
|||
"perfect-tree.png",
|
||||
"non-complete-tree.png",
|
||||
"max-heap-tree.png",
|
||||
"max-heap-array.png"
|
||||
"max-heap-array.png",
|
||||
"max-heapify-1.png",
|
||||
"max-heapify-2.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -373,7 +375,7 @@
|
|||
"_journal/2024-04/2024-04-23.md": "20514052da91b06b979cacb3da758837",
|
||||
"_journal/2024-04-25.md": "10c98531cb90a6bc940ea7ae3342f98b",
|
||||
"_journal/2024-04/2024-04-24.md": "4cb04e0dea56e0b471fc0e428471a390",
|
||||
"algorithms/heaps.md": "b12c70ec85e514ce912821d133d116d4",
|
||||
"algorithms/heaps.md": "ed37002a7600a05794f668e092265522",
|
||||
"_journal/2024-04-26.md": "3ce37236a9e09e74b547a4f7231df5f0",
|
||||
"_journal/2024-04/2024-04-25.md": "5a81123af29f8ebf0a0d28f820a3a52e",
|
||||
"_journal/2024-04-28.md": "46726bf76a594b987c63ba8b9b6d13d3",
|
||||
|
|
|
@ -11,6 +11,8 @@ tags:
|
|||
|
||||
The **binary heap** data structure is an array object that can be viewed as a [[trees#Positional Trees|complete binary tree]].
|
||||
|
||||
The primary function used to maintain the max-heap property is `MAX_HEAPIFY_DOWN`. This function assumes the left and right- subtrees at a given node are max heaps but that the current node may be smaller than its children. An analagous function and assumptions exist for `MIN_HEAPIFY_DOWN`.
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A binary heap is an {array} that can be viewed as a {binary tree}.
|
||||
|
@ -147,6 +149,294 @@ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (
|
|||
<!--ID: 1714356546616-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What preconditions must hold before invoking `MAX_HEAPIFY_DOWN` on a node?
|
||||
Back: The node's left and right subtrees must be max-heaps.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155389-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When is `MAX_HEAPIFY_DOWN` a no-op?
|
||||
Back: When the current node is already larger than both its children.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155419-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If not a no-op, which child should `MAX_HEAPIFY_DOWN` swap its current value with?
|
||||
Back: The larger of its two children.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155425-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a heap of height $h$, *why* is `MAX_HEAPIFY_DOWN`'s worst case runtime $O(h)$?
|
||||
Back: Each invocation may violate the max-heap property of a child node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155432-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the runtime of `MAX_HEAPIFY_DOWN`?
|
||||
Back: $O(h)$ where $h$ is the height of the heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425256-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of calling `MAX_HEAPIFY_DOWN` on the highlighted node?
|
||||
![[max-heapify-1.png]]
|
||||
Back:
|
||||
![[max-heapify-2.png]]
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155438-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the runtime of `MIN_HEAPIFY_DOWN`?
|
||||
Back: $O(h)$ where $h$ is the height of the heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425286-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What preconditions must hold before invoking `MIN_HEAPIFY_DOWN` on a node?
|
||||
Back: The node's left and right subtrees must be min-heaps.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155443-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When is `Min_HEAPIFY_DOWN` a no-op?
|
||||
Back: When the current node is already smaller than both its children.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155448-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If not a no-op, which child should `MIN_HEAPIFY_DOWN` swap its current value with?
|
||||
Back: The smaller of its two children.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155453-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a heap of height $h$, *why* is `MIN_HEAPIFY_DOWN`'s worst case runtime $O(h)$?
|
||||
Back: Each invocation may violate the min-heap property of a child node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155459-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the "heapify" operation of a heap refer to?
|
||||
Back: Repeatedly swapping a node's value with a child until the heap property is achieved.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714399155469-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many internal nodes does a binary heap of size $n$ have?
|
||||
Back: $\lfloor n / 2 \rfloor$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425292-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many internal nodes precede the first external node of a heap of size $n$?
|
||||
Back: $\lfloor n / 2 \rfloor$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425296-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the height of a binary heap?
|
||||
Back: The height of the heap's root when viewed as a complete binary tree.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425300-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the input of `MAX_HEAPIFY_DOWN`?
|
||||
Back: The index of a node in the target heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425304-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the input of `BUILD_MAX_HEAP`?
|
||||
Back: An array.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425309-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the runtime of `BUILD_MAX_HEAP` on an array of $n$ elements?
|
||||
Back: $O(n)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425314-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the `BUILD_MAX_HEAP` function usually implemented?
|
||||
Back: As calling heapify on each internal node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425320-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which node does `BUILD_MAX_HEAP` start iterating on?
|
||||
Back: The last internal node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425326-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why does `BUILD_MAX_HEAP` "ignore" the external nodes of a heap?
|
||||
Back: Because they are already max-heaps of size $1$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425331-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given heap $H[0{..}n{-}1]$, what is `BUILD_MAX_HEAP`'s loop invariant?
|
||||
Back: Each node in $H[i{+}1{..}n{-}1]$ is the root of a max-heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425336-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is initialization of `BUILD_MAX_HEAP`'s loop invariant?
|
||||
Back: Every external node is the root of a max-heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425340-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is maintenance of `BUILD_MAX_HEAP`'s loop invariant?
|
||||
Back: Calling `MAX_HEAPIFY_DOWN` maintains the max-heap property of the current node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425344-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In pseudocode, how is `BUILD_MAX_HEAP` implemented?
|
||||
Back:
|
||||
```c
|
||||
void BUILD_MAX_HEAP(int n, int H[static n]) {
|
||||
for (int i = (n / 2) - 1; i >= 0; --i) {
|
||||
MAX_HEAPIFY_DOWN(i, H);
|
||||
}
|
||||
}
|
||||
```
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425348-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the input of `BUILD_MIN_HEAP`?
|
||||
Back: An array.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425351-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the runtime of `BUILD_MIN_HEAP` on an array of $n$ elements?
|
||||
Back: $O(n)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425355-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the `BUILD_MIN_HEAP` function usually implemented?
|
||||
Back: As calling heapify on each internal node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425359-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which node does `BUILD_MIN_HEAP` start iterating on?
|
||||
Back: The last internal node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425363-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why does `BUILD_MIN_HEAP` "ignore" the external nodes of a heap?
|
||||
Back: Because they are already max-heaps of size $1$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425367-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given heap $H[0{..}n{-}1]$, what is `BUILD_MIN_HEAP`'s loop invariant?
|
||||
Back: Each node in $H[i{+}1{..}n{-}1]$ is the root of a min-heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425372-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is initialization of `BUILD_MIN_HEAP`'s loop invariant?
|
||||
Back: Every external node is the root of a min-heap.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425376-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is maintenance of `BUILD_MIN_HEAP`'s loop invariant?
|
||||
Back: Calling `MIN_HEAPIFY_DOWN` maintains the min-heap property of the current node.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425381-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In pseudocode, how is `BUILD_MIN_HEAP` implemented?
|
||||
Back:
|
||||
```c
|
||||
void BUILD_MIN_HEAP(int n, int H[static n]) {
|
||||
for (int i = (n / 2) - 1; i >= 0; --i) {
|
||||
MIN_HEAPIFY_DOWN(i, H);
|
||||
}
|
||||
}
|
||||
```
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714403425386-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
Loading…
Reference in New Issue