Flashcard fixups.
parent
c8d21b8aa6
commit
b66cc885db
|
@ -76,7 +76,11 @@
|
||||||
"set/images": "",
|
"set/images": "",
|
||||||
"x86-64/instructions": "",
|
"x86-64/instructions": "",
|
||||||
"algebra/sequences/images": "",
|
"algebra/sequences/images": "",
|
||||||
"ontology/rdf/images": ""
|
"ontology/rdf/images": "",
|
||||||
|
"calculus": "",
|
||||||
|
"_journal/2024-09": "",
|
||||||
|
"c17/types": "",
|
||||||
|
"calculus/images": ""
|
||||||
},
|
},
|
||||||
"FOLDER_TAGS": {
|
"FOLDER_TAGS": {
|
||||||
"algorithms": "",
|
"algorithms": "",
|
||||||
|
@ -134,7 +138,11 @@
|
||||||
"set/images": "",
|
"set/images": "",
|
||||||
"x86-64/instructions": "",
|
"x86-64/instructions": "",
|
||||||
"algebra/sequences/images": "",
|
"algebra/sequences/images": "",
|
||||||
"ontology/rdf/images": ""
|
"ontology/rdf/images": "",
|
||||||
|
"calculus": "",
|
||||||
|
"_journal/2024-09": "",
|
||||||
|
"c17/types": "",
|
||||||
|
"calculus/images": ""
|
||||||
},
|
},
|
||||||
"Syntax": {
|
"Syntax": {
|
||||||
"Begin Note": "%%ANKI",
|
"Begin Note": "%%ANKI",
|
||||||
|
@ -163,47 +171,16 @@
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"Added Media": [
|
"Added Media": [
|
||||||
"b-tree-full-node.png",
|
"adj-list-representation.png",
|
||||||
"b-tree-split-node.png",
|
"adj-matrix-representation.png",
|
||||||
"b-tree-initial.png",
|
"abs-value-geom.png",
|
||||||
"b-tree-inserted-b.png",
|
"triangle-inequality.png",
|
||||||
"b-tree-inserted-q.png",
|
"triangle-inequality-degenerate.png",
|
||||||
"relation-ordering-example.png",
|
|
||||||
"venn-diagram-union.png",
|
"venn-diagram-union.png",
|
||||||
"venn-diagram-abs-comp.png",
|
"venn-diagram-abs-comp.png",
|
||||||
"venn-diagram-intersection.png",
|
"venn-diagram-intersection.png",
|
||||||
"venn-diagram-rel-comp.png",
|
"venn-diagram-rel-comp.png",
|
||||||
"venn-diagram-symm-diff.png",
|
"venn-diagram-symm-diff.png"
|
||||||
"function-bijective.png",
|
|
||||||
"function-injective.png",
|
|
||||||
"function-surjective.png",
|
|
||||||
"function-general.png",
|
|
||||||
"function-kernel.png",
|
|
||||||
"closed-addressing.png",
|
|
||||||
"open-addressing.png",
|
|
||||||
"directed-graph-example.png",
|
|
||||||
"undirected-graph-example.png",
|
|
||||||
"graph-isomorphic.png",
|
|
||||||
"graph-induced-subgraph.png",
|
|
||||||
"graph-subgraph.png",
|
|
||||||
"graph-non-subgraph.png",
|
|
||||||
"cyclic-undirected-labelled.png",
|
|
||||||
"free-tree.png",
|
|
||||||
"forest.png",
|
|
||||||
"cyclic-undirected.png",
|
|
||||||
"rooted-tree.png",
|
|
||||||
"ordered-rooted-tree-cmp.png",
|
|
||||||
"ordered-binary-tree-cmp.png",
|
|
||||||
"lcrs-nodes.png",
|
|
||||||
"binary-tree-nodes.png",
|
|
||||||
"archimedean-property.png",
|
|
||||||
"infinite-cartesian-product.png",
|
|
||||||
"abs-value-geom.png",
|
|
||||||
"triangle-inequality.png",
|
|
||||||
"triangle-inequality-degenerate.png",
|
|
||||||
"adj-list-representation.png",
|
|
||||||
"adj-matrix-representation.png",
|
|
||||||
"church-rosser.png"
|
|
||||||
],
|
],
|
||||||
"File Hashes": {
|
"File Hashes": {
|
||||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||||
|
@ -383,7 +360,7 @@
|
||||||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||||
"set/index.md": "fd887b45cf0d884c841d0ce651ddf513",
|
"set/index.md": "7d09418b46856b721f14c5c1bc7320fa",
|
||||||
"set/graphs.md": "15aa43bf7f73347219f822e4b400e9bf",
|
"set/graphs.md": "15aa43bf7f73347219f822e4b400e9bf",
|
||||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||||
"_journal/2024-03/2024-03-18.md": "2c711c50247a9880f7ed0d33b16e1101",
|
"_journal/2024-03/2024-03-18.md": "2c711c50247a9880f7ed0d33b16e1101",
|
||||||
|
@ -755,7 +732,7 @@
|
||||||
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
||||||
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||||
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
|
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
|
||||||
"set/order.md": "66581eb2d882569b1591e660601caa55",
|
"set/order.md": "cbe8b86876140a77a0b077893e2c255b",
|
||||||
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||||
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
||||||
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||||
|
@ -788,12 +765,12 @@
|
||||||
"_journal/2024-08-25.md": "e73a8edbd027d0f1a39289540eb512f2",
|
"_journal/2024-08-25.md": "e73a8edbd027d0f1a39289540eb512f2",
|
||||||
"_journal/2024-08/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
|
"_journal/2024-08/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
|
||||||
"algebra/abs-val.md": "a47bc08db62304eb526d15ede3e300cf",
|
"algebra/abs-val.md": "a47bc08db62304eb526d15ede3e300cf",
|
||||||
"data-structures/graphs.md": "594d136ce637448641631c3647599c3a",
|
"data-structures/graphs.md": "93233f0fa6980b8b311de1660de3f3e2",
|
||||||
"_journal/2024-08-26.md": "5bed1b0ee34e546c31760f5a0aa5ca19",
|
"_journal/2024-08-26.md": "5bed1b0ee34e546c31760f5a0aa5ca19",
|
||||||
"_journal/2024-08/2024-08-25.md": "a3337b4658677810127350ef3e0ad146",
|
"_journal/2024-08/2024-08-25.md": "a3337b4658677810127350ef3e0ad146",
|
||||||
"_journal/2024-08-27.md": "d9ffc6ea2128ab5a86ab5f2619206736",
|
"_journal/2024-08-27.md": "d9ffc6ea2128ab5a86ab5f2619206736",
|
||||||
"_journal/2024-08/2024-08-26.md": "6f40716e2f01cd097d4881259babf1ba",
|
"_journal/2024-08/2024-08-26.md": "6f40716e2f01cd097d4881259babf1ba",
|
||||||
"c17/types/conversions.md": "d70d32534b0c0141daf47f289840b41a",
|
"c17/types/conversions.md": "477528bf1a297a8fc4eed0ecb4206158",
|
||||||
"_journal/2024-08-28.md": "c9c0e7ab8bcbf23d6332b3f19ec4d997",
|
"_journal/2024-08-28.md": "c9c0e7ab8bcbf23d6332b3f19ec4d997",
|
||||||
"_journal/2024-08-30.md": "ff50eb8dd5124c20d4fa291d8b675238",
|
"_journal/2024-08-30.md": "ff50eb8dd5124c20d4fa291d8b675238",
|
||||||
"_journal/2024-08/2024-08-28.md": "92e653379c8d7594bb23de4b330913fe",
|
"_journal/2024-08/2024-08-28.md": "92e653379c8d7594bb23de4b330913fe",
|
||||||
|
@ -801,7 +778,13 @@
|
||||||
"_journal/2024-08/2024-08-29.md": "3e950ebf5f7e1cc125b23b736fd3f2d2",
|
"_journal/2024-08/2024-08-29.md": "3e950ebf5f7e1cc125b23b736fd3f2d2",
|
||||||
"_journal/2024-09-01.md": "4a6536246b824636a50119d9065ea824",
|
"_journal/2024-09-01.md": "4a6536246b824636a50119d9065ea824",
|
||||||
"_journal/2024-08/2024-08-31.md": "f88a00ce067329b9ded07994c65817a7",
|
"_journal/2024-08/2024-08-31.md": "f88a00ce067329b9ded07994c65817a7",
|
||||||
"_journal/2024-08/2024-08-30.md": "0eba0fb5127f435068b16d4cb6c64a43"
|
"_journal/2024-08/2024-08-30.md": "0eba0fb5127f435068b16d4cb6c64a43",
|
||||||
|
"_journal/2024-09-05.md": "13076856bc3861468b5a8b0a0e44e924",
|
||||||
|
"_journal/2024-09/2024-09-05.md": "2183a8ed0f1f08115d6fd9c6c59b8648",
|
||||||
|
"_journal/2024-09/2024-09-04.md": "4a6536246b824636a50119d9065ea824",
|
||||||
|
"_journal/2024-09/2024-09-03.md": "4a6536246b824636a50119d9065ea824",
|
||||||
|
"_journal/2024-09/2024-09-02.md": "4a6536246b824636a50119d9065ea824",
|
||||||
|
"_journal/2024-09/2024-09-01.md": "a18864d37971a841f7fd908ddb6d9033"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-09-05"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [ ] Anki Flashcards
|
||||||
|
- [ ] KoL
|
||||||
|
- [ ] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -271,7 +271,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
When is the type domain of `a + b` equal to `unsigned short`?
|
When is the common real type of `a + b` equal to `unsigned short`?
|
||||||
```c
|
```c
|
||||||
unsigned short a;
|
unsigned short a;
|
||||||
signed int b;
|
signed int b;
|
||||||
|
@ -291,7 +291,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Suppose `a` and `b` has signed and unsigned types. When is `a + b` unsigned?
|
Suppose `a` and `b` have signed and unsigned types respectively. When is `a + b` unsigned?
|
||||||
Back: When `b`'s type has higher rank or the range of `a` cannot fit the range of `b`.
|
Back: When `b`'s type has higher rank or the range of `a` cannot fit the range of `b`.
|
||||||
Reference: “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
|
Reference: “ISO: Programming Languages - C,” April 12, 2011, [https://port70.net/~nsz/c/c11/n1570.pdf](https://port70.net/~nsz/c/c11/n1570.pdf).
|
||||||
<!--ID: 1724762203465-->
|
<!--ID: 1724762203465-->
|
||||||
|
|
|
@ -150,7 +150,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
The following is an example of what kind of graph representation?
|
The following is an example of what kind of graph representatio?
|
||||||
![[adj-matrix-representation.png]]
|
![[adj-matrix-representation.png]]
|
||||||
Back: An adjacency-matrix representation.
|
Back: An adjacency-matrix representation.
|
||||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
|
|
|
@ -332,7 +332,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How is set $\{v \mid \exists A \in B, v = A\}$ written more compactly?
|
How is set $\{v \mid \exists A \in B, v = A\}$ written more compactly?
|
||||||
Back: $\{A \mid A \in B\}$
|
Back: $B$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1720370610022-->
|
<!--ID: 1720370610022-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -340,7 +340,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How is set $\{v \mid \exists A \in B, v \in A\}$ written more compactly?
|
How is set $\{v \mid \exists A \in B, v \in A\}$ written more compactly?
|
||||||
Back: N/A.
|
Back: $\bigcup B$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1720370610028-->
|
<!--ID: 1720370610028-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -41,7 +41,6 @@ A binary relation $R$ on set $A$ is a **preorder on $A$** iff it is reflexive on
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
A binary relation on $A$ is a preorder on $A$ if it satisfies what two properties?
|
A binary relation on $A$ is a preorder on $A$ if it satisfies what two properties?
|
||||||
What is a preorder on $A$?
|
|
||||||
Back: Reflexivity on $A$ and transitivity.
|
Back: Reflexivity on $A$ and transitivity.
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
<!--ID: 1723814834775-->
|
<!--ID: 1723814834775-->
|
||||||
|
|
Loading…
Reference in New Issue