LCRS trees and set theory classes.
parent
037ea0f767
commit
a81dcdf176
|
@ -127,7 +127,9 @@
|
|||
"graph-isomorphic.png",
|
||||
"graph-induced-subgraph.png",
|
||||
"graph-subgraph.png",
|
||||
"graph-non-subgraph.png"
|
||||
"graph-non-subgraph.png",
|
||||
"lcrs-nodes.png",
|
||||
"binary-tree-nodes.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -307,7 +309,7 @@
|
|||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
"set/index.md": "fd0afffa094e47aace1ec89428218eec",
|
||||
"set/index.md": "923225a165d52476bee68d36ac2e4db3",
|
||||
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||
|
@ -328,7 +330,7 @@
|
|||
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
||||
"x86-64/instructions.md": "c447f09c6b0ad504726c3232ff5871b4",
|
||||
"git/refs.md": "e20c2c9b14ba6c2bd235416017c5c474",
|
||||
"set/trees.md": "0d21b947917498f107da140cc9fb93a7",
|
||||
"set/trees.md": "27bba3f28c31ad9effe9a99a43991bd4",
|
||||
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
||||
"_journal/2024-03/2024-03-23.md": "ad4e92cc2bf37f174a0758a0753bf69b",
|
||||
"_journal/2024-03/2024-03-22.md": "a509066c9cd2df692549e89f241d7bd9",
|
||||
|
@ -430,7 +432,7 @@
|
|||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
||||
"programming/pred-trans.md": "736e2c6e89494c8f5a2a7998aa905fdd",
|
||||
"programming/pred-trans.md": "7006b05654a0485472166e81700c98f1",
|
||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
|
@ -440,8 +442,8 @@
|
|||
"_journal/2024-05-16.md": "580c7ec61ec56be92fa8d6affcf0a5f6",
|
||||
"_journal/2024-05/2024-05-15.md": "4e6a7e6df32e93f0d8a56bc76613d908",
|
||||
"logic/pred-logic.md": "c23c3da8756ac0ef17b9710a67440d84",
|
||||
"logic/prop-logic.md": "4d45544452791470458cfb08656e16c1",
|
||||
"_journal/2024-05-17.md": "4bada636652a610967c4ce51deb2ff43",
|
||||
"logic/prop-logic.md": "f7d3ae42989c1c226c40c8354a546264",
|
||||
"_journal/2024-05-17.md": "6e8033da97f16d9ce32b4d5762bcd573",
|
||||
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c"
|
||||
},
|
||||
"fields_dict": {
|
||||
|
|
|
@ -9,3 +9,5 @@ title: "2024-05-17"
|
|||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Exploration of the law of [[pred-trans#Distributivity of Conjunction|Distributivity of Conjunction]].
|
||||
* Flashcards for left-child, right-sibling tree representations.
|
||||
* Distinguish [[set/index#Classes|classes]] and sets. Discuss Zermelo-Fraenkel and von Neumann-Bernays alternatives.
|
|
@ -238,6 +238,7 @@ Basic
|
|||
Given propositions $p$ and $q$, $p \Leftrightarrow q$ is equivalent to the conjunction of what two expressions?
|
||||
Back: $p \Rightarrow q$ and $q \Rightarrow p$.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047070-->
|
||||
END%%
|
||||
|
||||
## Sets
|
||||
|
@ -393,18 +394,21 @@ Basic
|
|||
Given sets $a$ and $b$, $a = b$ is equivalent to the conjunction of what two expressions?
|
||||
Back: $a \subseteq b$ and $b \subseteq a$.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047071-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$a \Rightarrow b$} is to propositional logic as {$a \subseteq b$} is to sets.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047073-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$a \Leftrightarrow b$} is to propositional logic as {$a = b$} is to sets.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047074-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
|
|
@ -306,12 +306,14 @@ Basic
|
|||
What does Distributivity of Conjunction state?
|
||||
Back: Given command $S$ and predicates $Q$ and $R$, $wp(S, Q \land R) = wp(S, Q) \land wp(S, R)$.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047060-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Distributivity of Conjunction states {$wp(S, Q \land R)$} $=$ {$wp(S, Q) \land wp(S, R)$}.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047062-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -319,6 +321,7 @@ Basic
|
|||
In Gries's exposition, is Distributivity of Conjunction taken as an axiom or a theorem?
|
||||
Back: An axiom.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047064-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -326,6 +329,7 @@ Basic
|
|||
Does $wp(S, Q) \land wp(S, R) \Rightarrow wp(S, Q \land R)$ hold when $S$ is nondeterministic?
|
||||
Back: Yes.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047065-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -333,6 +337,7 @@ Basic
|
|||
Does $wp(S, Q \land R) \Rightarrow wp(S, Q) \land wp(S, R)$ hold when $S$ is nondeterministic?
|
||||
Back: Yes.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047067-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -340,6 +345,7 @@ Basic
|
|||
What does it mean for command $S$ to be nondeterministic?
|
||||
Back: Execution may not be the same even if begun in the same state.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047068-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
|
@ -134,6 +134,129 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1715786028667-->
|
||||
END%%
|
||||
|
||||
## Classes
|
||||
|
||||
The **Zermelo-Fraenkel alternative** avoids speaking of collections defined using set theoretical notation that are not sets. The **von Neumann-Bernays** alternative calls these **classes**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In set theory, what is a class?
|
||||
Back: A collection defined using set theoretical notation that isn't a set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576758-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which two alternatives are usually employed when speaking of classes?
|
||||
Back: The Zermelo-Fraenkel alternative and the von Neumann-Bernays alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576761-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the Zermelo-Fraenkel alternative say about classes?
|
||||
Back: It gives it no ontological status at all.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576763-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the von Neumann-Bernays alternative say about classes?
|
||||
Back: It refers to objects defined using set theory but that aren't actually sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576765-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:Zermelo}-{2:Fraenkel} alternative is a separate approach from the {2:von Neumann}-{1:Bernays} alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576766-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory alternative avoids the term "class"?
|
||||
Back: The Zermelo-Fraenkel alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576768-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory alternative embraces the term "class"?
|
||||
Back: The von Neumann-Bernays alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576769-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is $\{x \mid x \neq x\}$?
|
||||
Back: A set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576771-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to $\{x \mid x \neq x\}$?
|
||||
Back: The empty set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576772-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is $\{x \mid x = x\}$?
|
||||
Back: A class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576774-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to $\{x \mid x = x\}$?
|
||||
Back: The class of all sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576775-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Are sets or classes more general?
|
||||
Back: Classes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576777-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is every set a class?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576779-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is every class a set?
|
||||
Back: No.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576781-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assuming entrance requirement $\_\_\_$, what kind of mathematical object is $\{x \mid \_\_\_\}$?
|
||||
Back: A class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576782-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
|
|
|
@ -722,6 +722,134 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1712409466682-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What $O(n)$ space representation is commonly used for ordered trees with unbounded branching?
|
||||
Back: A left-child, right-sibling tree representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969047043-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A node of a left-child, right-sibling tree representation has what three pointers?
|
||||
Back: The parent, left child, and right sibling.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969047046-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the space usage of a left-child, right-sibling representation?
|
||||
Back: Given $n$ nodes in the tree, $O(n)$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969047047-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What space may be wasted in a $k$-child representation of a $k$-ary tree?
|
||||
Back: Some children may be absent.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969047049-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What space advantage does a left-child, right-sibling representation have over a $k$-child representation?
|
||||
Back: Absent children are not stored in the former.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969047051-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is a `struct` of a $k$-child tree representation written?
|
||||
Back:
|
||||
```c
|
||||
struct Node {
|
||||
struct Node *parent;
|
||||
struct Node *children[k];
|
||||
};
|
||||
```
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: c17
|
||||
<!--ID: 1715969047052-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What tree representation corresponds to the following `struct`?
|
||||
```c
|
||||
struct Node {
|
||||
struct Node *parent;
|
||||
struct Node *children[k];
|
||||
};
|
||||
```
|
||||
Back: A $k$-ary child representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: c17
|
||||
<!--ID: 1715969047054-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is a `struct` of a left-child, right-sibling tree representation written?
|
||||
Back:
|
||||
```c
|
||||
struct Node {
|
||||
struct Node *parent;
|
||||
struct Node *left;
|
||||
struct Node *next;
|
||||
};
|
||||
```
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: c17
|
||||
<!--ID: 1715969047056-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What tree representation corresponds to the following `struct`?
|
||||
```c
|
||||
struct Node {
|
||||
struct Node *parent;
|
||||
struct Node *left;
|
||||
struct Node *next;
|
||||
};
|
||||
```
|
||||
Back: A left-child, right-sibling representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: c17
|
||||
<!--ID: 1715969047057-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is an LCRS tree representation?
|
||||
Back: A **l**eft-**c**hild, **r**ight-**s**ibling representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969525815-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following is a portion of what kind of tree representation?
|
||||
![[lcrs-nodes.png]]
|
||||
Back: A left-child, right-sibling representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969525819-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following is a portion of what kind of tree representation?
|
||||
![[binary-tree-nodes.png]]
|
||||
Back: A $k$-ary (binary) child representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969525820-->
|
||||
END%%
|
||||
|
||||
### Positional Trees
|
||||
|
||||
A **positional tree** is a rooted tree in which each child is labeled with a specific positive integer. A **$k$-ary tree** is a positional tree with at most $k$ children/labels. A binary tree is a $2$-ary tree.
|
||||
|
@ -1454,6 +1582,14 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1714349367662-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A node of a binary tree typically has what three pointers?
|
||||
Back: The parent, left child, and right child.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969047059-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
|
|
Loading…
Reference in New Issue