Notes on supremums and infimums.
parent
fb7cfabbd4
commit
a351363254
|
@ -755,7 +755,7 @@
|
|||
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||
"_journal/2024-08/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||
"_journal/2024-08/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||
"calculus/bounds.md": "4add5fb7591087d0b3383c53dc62e365",
|
||||
"calculus/bounds.md": "b410b7bc5beb5db799fe32b319745bb9",
|
||||
"calculus/index.md": "5ee4d950533ae330ca5ef9e113fe87f3",
|
||||
"x86-64/instructions/conditions.md": "c5571deac40ac2eeb8666f2d3b3c278e",
|
||||
"_journal/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
|
@ -767,7 +767,7 @@
|
|||
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
|
||||
"set/natural-numbers.md": "97ca466daf1173ed8973db1d1a1935cc",
|
||||
"_journal/2024-08-24.md": "15ad542d09725f672765f9915deb66bd",
|
||||
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
|
||||
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
|
||||
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe"
|
||||
},
|
||||
|
|
|
@ -8,4 +8,5 @@ title: "2024-08-24"
|
|||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Began notes on [[natural-numbers|natural numbers]].
|
||||
* Began notes on [[natural-numbers|natural numbers]].
|
||||
* Additional notes on supremums and infimums.
|
|
@ -264,6 +264,110 @@ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Int
|
|||
<!--ID: 1724115953386-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S \subseteq \mathbb{R}$ have a supremum. If $h > 0$, *why* does there exist an $x \in S$ such that $x > \mathop{\text{sup}} S - h$?
|
||||
Back: Otherwise $\mathop{\text{sup}}S - h$ is an upper bound less than $\mathop{\text{sup}}S$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640370-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S \subseteq \mathbb{R}$ have a supremum. If $h > 0$, *why* does there exist an $x \in S$ such that $x < \mathop{\text{sup}} S - h$?
|
||||
Back: N/A. This is not necessarily the case.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640373-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S \subseteq \mathbb{R}$ have an infimum. If $h > 0$, *why* does there exist an $x \in S$ such that $x > \mathop{\text{inf}} S + h$?
|
||||
Back: N/A. This is not necessarily the case.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640374-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S \subseteq \mathbb{R}$ have an infimum. If $h > 0$, *why* does there exist an $x \in S$ such that $x < \mathop{\text{inf}} S + h$?
|
||||
Back: Otherwise $\mathop{\text{inf}}S + h$ is a lower bound greater than $\mathop{\text{inf}}S$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640375-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A, B \subseteq \mathbb{R}$ have supremums. What set $C$ satisfies $\mathop{\text{sup}}C = \mathop{\text{sup}}A + \mathop{\text{sup}}B$?
|
||||
Back: $C = \{a + b \mid a \in A, b \in B\}$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640376-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A, B \subseteq \mathbb{R}$. When is $\mathop{\text{sup}} \,\{a + b \mid a \in A, b \in B\}$ defined?
|
||||
Back: When $A$ and $B$ both have a supremum.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640377-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A, B \subseteq \mathbb{R}$. When is $\mathop{\text{inf}} \,\{a + b \mid a \in A, b \in B\}$ defined?
|
||||
Back: When $A$ and $B$ both have an infimum.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640378-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A, B \subseteq \mathbb{R}$ have infimums. What set $C$ satisfies $\mathop{\text{inf}}C = \mathop{\text{inf}}A + \mathop{\text{inf}}B$?
|
||||
Back: $C = \{a + b \mid a \in A, b \in B\}$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523640379-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $S$ have a supremum?
|
||||
Back: Yes.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523911490-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $T$ have a supremum?
|
||||
Back: Indeterminate.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523911494-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $S$ have an infimum?
|
||||
Back: Indeterminate.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523911496-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $T$ have an infimum?
|
||||
Back: Yes.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523911497-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. How does $\mathop{\text{sup}} S$ compare to $\mathop{\text{inf}} T$?
|
||||
Back: $\mathop{\text{sup}}S \leq \mathop{\text{inf}}T$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1724523911499-->
|
||||
END%%
|
||||
|
||||
### Completeness Axiom
|
||||
|
||||
Every nonempty set $S$ of real numbers which is bounded above has a supremum; that is, there is a real number $B$ such that $B = \mathop{\text{sup}} S$.
|
||||
|
|
Loading…
Reference in New Issue