Notes on supremums and infimums.

main
Joshua Potter 2024-08-24 13:47:58 -06:00
parent fb7cfabbd4
commit a351363254
3 changed files with 108 additions and 3 deletions

View File

@ -755,7 +755,7 @@
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
"_journal/2024-08/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
"_journal/2024-08/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
"calculus/bounds.md": "4add5fb7591087d0b3383c53dc62e365",
"calculus/bounds.md": "b410b7bc5beb5db799fe32b319745bb9",
"calculus/index.md": "5ee4d950533ae330ca5ef9e113fe87f3",
"x86-64/instructions/conditions.md": "c5571deac40ac2eeb8666f2d3b3c278e",
"_journal/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
@ -767,7 +767,7 @@
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
"set/natural-numbers.md": "97ca466daf1173ed8973db1d1a1935cc",
"_journal/2024-08-24.md": "15ad542d09725f672765f9915deb66bd",
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe"
},

View File

@ -8,4 +8,5 @@ title: "2024-08-24"
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Began notes on [[natural-numbers|natural numbers]].
* Began notes on [[natural-numbers|natural numbers]].
* Additional notes on supremums and infimums.

View File

@ -264,6 +264,110 @@ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Int
<!--ID: 1724115953386-->
END%%
%%ANKI
Basic
Let $S \subseteq \mathbb{R}$ have a supremum. If $h > 0$, *why* does there exist an $x \in S$ such that $x > \mathop{\text{sup}} S - h$?
Back: Otherwise $\mathop{\text{sup}}S - h$ is an upper bound less than $\mathop{\text{sup}}S$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640370-->
END%%
%%ANKI
Basic
Let $S \subseteq \mathbb{R}$ have a supremum. If $h > 0$, *why* does there exist an $x \in S$ such that $x < \mathop{\text{sup}} S - h$?
Back: N/A. This is not necessarily the case.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640373-->
END%%
%%ANKI
Basic
Let $S \subseteq \mathbb{R}$ have an infimum. If $h > 0$, *why* does there exist an $x \in S$ such that $x > \mathop{\text{inf}} S + h$?
Back: N/A. This is not necessarily the case.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640374-->
END%%
%%ANKI
Basic
Let $S \subseteq \mathbb{R}$ have an infimum. If $h > 0$, *why* does there exist an $x \in S$ such that $x < \mathop{\text{inf}} S + h$?
Back: Otherwise $\mathop{\text{inf}}S + h$ is a lower bound greater than $\mathop{\text{inf}}S$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640375-->
END%%
%%ANKI
Basic
Let $A, B \subseteq \mathbb{R}$ have supremums. What set $C$ satisfies $\mathop{\text{sup}}C = \mathop{\text{sup}}A + \mathop{\text{sup}}B$?
Back: $C = \{a + b \mid a \in A, b \in B\}$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640376-->
END%%
%%ANKI
Basic
Let $A, B \subseteq \mathbb{R}$. When is $\mathop{\text{sup}} \,\{a + b \mid a \in A, b \in B\}$ defined?
Back: When $A$ and $B$ both have a supremum.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640377-->
END%%
%%ANKI
Basic
Let $A, B \subseteq \mathbb{R}$. When is $\mathop{\text{inf}} \,\{a + b \mid a \in A, b \in B\}$ defined?
Back: When $A$ and $B$ both have an infimum.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640378-->
END%%
%%ANKI
Basic
Let $A, B \subseteq \mathbb{R}$ have infimums. What set $C$ satisfies $\mathop{\text{inf}}C = \mathop{\text{inf}}A + \mathop{\text{inf}}B$?
Back: $C = \{a + b \mid a \in A, b \in B\}$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523640379-->
END%%
%%ANKI
Basic
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $S$ have a supremum?
Back: Yes.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523911490-->
END%%
%%ANKI
Basic
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $T$ have a supremum?
Back: Indeterminate.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523911494-->
END%%
%%ANKI
Basic
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $S$ have an infimum?
Back: Indeterminate.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523911496-->
END%%
%%ANKI
Basic
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. Does $T$ have an infimum?
Back: Yes.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523911497-->
END%%
%%ANKI
Basic
Let $S, T \subseteq \mathbb{R}$ be nonempty sets such that $\forall s \in S, \forall t \in T, s \leq t$. How does $\mathop{\text{sup}} S$ compare to $\mathop{\text{inf}} T$?
Back: $\mathop{\text{sup}}S \leq \mathop{\text{inf}}T$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1724523911499-->
END%%
### Completeness Axiom
Every nonempty set $S$ of real numbers which is bounded above has a supremum; that is, there is a real number $B$ such that $B = \mathop{\text{sup}} S$.