Add combinatoric punnett squares.
parent
0c698311d5
commit
a08a0bbee9
|
@ -83,7 +83,12 @@
|
|||
"merge-sort.gif",
|
||||
"theta-notation.png",
|
||||
"big-o-notation.png",
|
||||
"big-omega-notation.png"
|
||||
"big-omega-notation.png",
|
||||
"ordering-y-repetition-y.jpg",
|
||||
"ordering-repetition.jpg",
|
||||
"ordering-y-repetition-n.jpg",
|
||||
"ordering-n-repetition-y.jpg",
|
||||
"ordering-n-repetition-n.jpg"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "cd7c7ba91fb2f961c9f2437777e8e2ac",
|
||||
|
@ -176,7 +181,7 @@
|
|||
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||
"_journal/2024-02/2024-02-16.md": "e701902e369ec53098fc2deed4ec14fd",
|
||||
"binary/integer-encoding.md": "7ace6ab6c5a4191ae0abdfe7e5abb6a2",
|
||||
"combinatorics/index.md": "9a85e8858c50c9797243d6d01e1dcbe7",
|
||||
"combinatorics/index.md": "200f23380b0817cc13a9acd40996b125",
|
||||
"_journal/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
||||
"_journal/2024-02/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||
"combinatorics/multiplicative-principle.md": "f1430302e0a35b863fa965a834c4e40a",
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
|
@ -36,34 +36,110 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
If order matters and repeats are allowed, the number of selections is usually formatted in what way?
|
||||
What combinatorial *notation* corresponds to the highlighted square?
|
||||
![[ordering-y-repetition-y.jpg]]
|
||||
Back: $n^k$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708715147783-->
|
||||
<!--ID: 1709305803508-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If order matters and repeats are disallowed, the number of selections is usually formatted in what way?
|
||||
Back: $(n)_k$ (falling factorial)
|
||||
What combinatorial *concept* corresponds to the highlighted square?
|
||||
![[ordering-y-repetition-y.jpg]]
|
||||
Back: The multiplicative principle.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708715147784-->
|
||||
<!--ID: 1709305803515-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If order does not matter and repeats are allowed, the number of selections is usually formatted in what way?
|
||||
Back: $\binom{n + k}{k}$ (stars and bars)
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708715147786-->
|
||||
Which square corresponds to notation $n^k$?
|
||||
![[ordering-repetition.jpg]]
|
||||
Back:
|
||||
![[ordering-y-repetition-y.jpg]]
|
||||
<!--ID: 1709305803518-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If order does not matter and repeats are disallowed, the number of selections is usually formatted in what way?
|
||||
Back: $\binom{n}{k}$ (combinations)
|
||||
What combinatorial *notation* corresponds to the highlighted square?
|
||||
![[ordering-y-repetition-n.jpg]]
|
||||
Back: $(n)_k$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708715147787-->
|
||||
<!--ID: 1709305912355-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combinatorial *concept* corresponds to the highlighted square?
|
||||
![[ordering-y-repetition-n.jpg]]
|
||||
Back: $k$-permutations (falling factorials)
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709306052449-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which square corresponds to notation $(n)_k$?
|
||||
![[ordering-repetition.jpg]]
|
||||
Back:
|
||||
![[ordering-y-repetition-n.jpg]]
|
||||
<!--ID: 1709305912359-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combinatorial *notation* corresponds to the highlighted square?
|
||||
![[ordering-n-repetition-y.jpg]]
|
||||
Back: $\binom{n + k}{k}$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709306052455-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combinatorial *concept* corresponds to the highlighted square?
|
||||
![[ordering-n-repetition-y.jpg]]
|
||||
Back: Stars and bars
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709306052461-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which square corresponds to notation $\binom{n + k}{k}$?
|
||||
![[ordering-repetition.jpg]]
|
||||
Back:
|
||||
![[ordering-n-repetition-y.jpg]]
|
||||
<!--ID: 1709306052468-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combinatorial *notation* corresponds to the highlighted square?
|
||||
![[ordering-n-repetition-n.jpg]]
|
||||
Back: $\binom{n}{k}$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709306140856-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combinatorial *concept* corresponds to the highlighted square?
|
||||
![[ordering-n-repetition-n.jpg]]
|
||||
Back: Combinations
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709306140887-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which square corresponds to notation $\binom{n}{k}$?
|
||||
![[ordering-repetition.jpg]]
|
||||
Back:
|
||||
![[ordering-n-repetition-n.jpg]]
|
||||
<!--ID: 1709306140891-->
|
||||
END%%
|
||||
|
||||
## References
|
||||
|
|
Loading…
Reference in New Issue