Add combinatoric punnett squares.

c-declarations
Joshua Potter 2024-03-01 08:16:51 -07:00
parent 0c698311d5
commit a08a0bbee9
7 changed files with 95 additions and 14 deletions

View File

@ -83,7 +83,12 @@
"merge-sort.gif", "merge-sort.gif",
"theta-notation.png", "theta-notation.png",
"big-o-notation.png", "big-o-notation.png",
"big-omega-notation.png" "big-omega-notation.png",
"ordering-y-repetition-y.jpg",
"ordering-repetition.jpg",
"ordering-y-repetition-n.jpg",
"ordering-n-repetition-y.jpg",
"ordering-n-repetition-n.jpg"
], ],
"File Hashes": { "File Hashes": {
"algorithms/index.md": "cd7c7ba91fb2f961c9f2437777e8e2ac", "algorithms/index.md": "cd7c7ba91fb2f961c9f2437777e8e2ac",
@ -176,7 +181,7 @@
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048", "_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
"_journal/2024-02/2024-02-16.md": "e701902e369ec53098fc2deed4ec14fd", "_journal/2024-02/2024-02-16.md": "e701902e369ec53098fc2deed4ec14fd",
"binary/integer-encoding.md": "7ace6ab6c5a4191ae0abdfe7e5abb6a2", "binary/integer-encoding.md": "7ace6ab6c5a4191ae0abdfe7e5abb6a2",
"combinatorics/index.md": "9a85e8858c50c9797243d6d01e1dcbe7", "combinatorics/index.md": "200f23380b0817cc13a9acd40996b125",
"_journal/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629", "_journal/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
"_journal/2024-02/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048", "_journal/2024-02/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
"combinatorics/multiplicative-principle.md": "f1430302e0a35b863fa965a834c4e40a", "combinatorics/multiplicative-principle.md": "f1430302e0a35b863fa965a834c4e40a",

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View File

@ -36,34 +36,110 @@ END%%
%%ANKI %%ANKI
Basic Basic
If order matters and repeats are allowed, the number of selections is usually formatted in what way? What combinatorial *notation* corresponds to the highlighted square?
![[ordering-y-repetition-y.jpg]]
Back: $n^k$ Back: $n^k$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708715147783--> <!--ID: 1709305803508-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
If order matters and repeats are disallowed, the number of selections is usually formatted in what way? What combinatorial *concept* corresponds to the highlighted square?
Back: $(n)_k$ (falling factorial) ![[ordering-y-repetition-y.jpg]]
Back: The multiplicative principle.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708715147784--> <!--ID: 1709305803515-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
If order does not matter and repeats are allowed, the number of selections is usually formatted in what way? Which square corresponds to notation $n^k$?
Back: $\binom{n + k}{k}$ (stars and bars) ![[ordering-repetition.jpg]]
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Back:
<!--ID: 1708715147786--> ![[ordering-y-repetition-y.jpg]]
<!--ID: 1709305803518-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
If order does not matter and repeats are disallowed, the number of selections is usually formatted in what way? What combinatorial *notation* corresponds to the highlighted square?
Back: $\binom{n}{k}$ (combinations) ![[ordering-y-repetition-n.jpg]]
Back: $(n)_k$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708715147787--> <!--ID: 1709305912355-->
END%%
%%ANKI
Basic
What combinatorial *concept* corresponds to the highlighted square?
![[ordering-y-repetition-n.jpg]]
Back: $k$-permutations (falling factorials)
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709306052449-->
END%%
%%ANKI
Basic
Which square corresponds to notation $(n)_k$?
![[ordering-repetition.jpg]]
Back:
![[ordering-y-repetition-n.jpg]]
<!--ID: 1709305912359-->
END%%
%%ANKI
Basic
What combinatorial *notation* corresponds to the highlighted square?
![[ordering-n-repetition-y.jpg]]
Back: $\binom{n + k}{k}$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709306052455-->
END%%
%%ANKI
Basic
What combinatorial *concept* corresponds to the highlighted square?
![[ordering-n-repetition-y.jpg]]
Back: Stars and bars
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709306052461-->
END%%
%%ANKI
Basic
Which square corresponds to notation $\binom{n + k}{k}$?
![[ordering-repetition.jpg]]
Back:
![[ordering-n-repetition-y.jpg]]
<!--ID: 1709306052468-->
END%%
%%ANKI
Basic
What combinatorial *notation* corresponds to the highlighted square?
![[ordering-n-repetition-n.jpg]]
Back: $\binom{n}{k}$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709306140856-->
END%%
%%ANKI
Basic
What combinatorial *concept* corresponds to the highlighted square?
![[ordering-n-repetition-n.jpg]]
Back: Combinations
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709306140887-->
END%%
%%ANKI
Basic
Which square corresponds to notation $\binom{n}{k}$?
![[ordering-repetition.jpg]]
Back:
![[ordering-n-repetition-n.jpg]]
<!--ID: 1709306140891-->
END%% END%%
## References ## References