Fix up flashcards.
parent
0c34a108cb
commit
a02bda1eed
|
@ -256,7 +256,7 @@
|
|||
"_journal/2024-02/2024-02-21.md": "f423137ae550eb958378750d1f5e98c7",
|
||||
"_journal/2024-02-23.md": "219ce9ad15a8733edd476c97628b71fd",
|
||||
"_journal/2024-02/2024-02-22.md": "312e55d57868026f6e80f7989a889c2b",
|
||||
"c17/strings.md": "f3cc8bd2d8c0e771079dc846d3015b42",
|
||||
"c17/strings.md": "2da50edd26eae35c81f70e65bbd12d49",
|
||||
"c17/index.md": "78576ee41d0185df82c59999142f4edb",
|
||||
"c17/escape-sequences.md": "a8b99070336878b4e8c11e9e4525a500",
|
||||
"c17/declarations.md": "ab6d44e48b0c1c8d98cd409721cc2c53",
|
||||
|
@ -510,14 +510,14 @@
|
|||
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
||||
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
||||
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
||||
"set/relations.md": "2750a1f7f82dfd146779c02572f8bfe9",
|
||||
"set/relations.md": "07d593f334d656d1deb3d11055a21c37",
|
||||
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
||||
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
||||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||
"_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3",
|
||||
"lambda-calculus/alpha-conversion.md": "007828faf9b4ace5bd30b87a36a90dcf",
|
||||
"lambda-calculus/index.md": "64efe9e4f6036d3f5b4ec0dc8cd3e7b9",
|
||||
"x86-64/instructions/condition-codes.md": "efb0a3244139e91461c1b327d897206f",
|
||||
"x86-64/instructions/condition-codes.md": "5524d1c49bb184b336f814194622a0ee",
|
||||
"x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199",
|
||||
"x86-64/instructions/arithmetic.md": "271218d855e7291f119f96e91f582738",
|
||||
"x86-64/instructions/access.md": "c19bc3392cf493fcc9becf46c818cc50",
|
||||
|
@ -613,10 +613,10 @@
|
|||
"_journal/2024-07/2024-07-16.md": "149222eab7a7f58993b8e4dc8a3fb884",
|
||||
"_journal/2024-07-18.md": "a9d26ce938228973f07178a15128a681",
|
||||
"_journal/2024-07/2024-07-17.md": "0c816cd6110bdd14d3eac4e5b82510cf",
|
||||
"ontology/dialetheism.md": "175e92654e6bbab8c21afbdc040035a2",
|
||||
"ontology/dialetheism.md": "fa71c557744e009a067c68f9650a09b1",
|
||||
"abstract-rewriting-systems/index.md": "b7486b7635cb0d8bafc2a2f095af90fb",
|
||||
"abstract-rewriting-systems/normal-form.md": "2fff9a1d85bca0a2941a54b0084a0309",
|
||||
"_journal/2024-07-19.md": "4b6a8d1fea576f6e88d765cbb85e1331",
|
||||
"_journal/2024-07-19.md": "ced9d4c4759468885d85efa0b87b7823",
|
||||
"_journal/2024-07/2024-07-18.md": "237918b58424435959cbc949d01e7932"
|
||||
},
|
||||
"fields_dict": {
|
||||
|
|
|
@ -2,8 +2,10 @@
|
|||
title: "2024-07-19"
|
||||
---
|
||||
|
||||
- [ ] Anki Flashcards
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Finished chapter 1 "The lambda-calculus" of "Lambda-Calculus and Combinators, an Introduction".
|
|
@ -995,7 +995,7 @@ How are C escape sequences exposed in bash?
|
|||
Back: Using ANSI-C quoting, i.e. `$$'string'`.
|
||||
Reference: Mendel Cooper, “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
Tags: bash
|
||||
<!--ID: 1706975891817-->
|
||||
<!--ID: 1721387296231-->
|
||||
END%%
|
||||
|
||||
* `\xhh`: Consists of one or more [[radices#Hexadecimal|hexadecimal]] digits. The `x` prefix is required to distinguish from octal escape sequences.
|
||||
|
|
|
@ -404,7 +404,7 @@ END%%
|
|||
|
||||
## Falling Factorials
|
||||
|
||||
If we generalize to choosing $k \leq n$ elements of $k$ objects, we can calculate the $k$-permutation of $n$. This is denoted as $(n)_k$, sometimes called the **falling factorial**. $$(n)_k = \frac{n!}{(n - k)!}$$
|
||||
If we generalize to choosing $k \leq n$ elements of $n$ objects, we can calculate the $k$-permutation of $n$. This is denoted as $(n)_k$, sometimes called the **falling factorial**. $$(n)_k = \frac{n!}{(n - k)!}$$
|
||||
|
||||
The derivation works by noting that we have $n - 0$ possible ways to pick the first object, $n - 1$ ways to pick the second, up until $n - (k - 1)$ ways to pick the last object.
|
||||
|
||||
|
@ -464,6 +464,13 @@ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n
|
|||
<!--ID: 1708366788631-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combinatorial problem does $(n)_0$ represent?
|
||||
Back: The number of ways to choose $0$ objects from $n$ choices.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
In a $k$-permutation of $n$ objects, there are $n - 0$ choices for first object and {$n - (k - 1)$} choices for the last object.
|
||||
|
|
|
@ -27,7 +27,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is used to refer to the so-called "standard logic" of mathematics?
|
||||
What name is given to the so-called "standard logic" of mathematics?
|
||||
Back: Classical logic.
|
||||
Reference: Graham Priest, Koji Tanaka, and Zach Weber, “Paraconsistent Logic,” in _The Stanford Encyclopedia of Philosophy_, ed. Edward N. Zalta, Spring 2022 (Metaphysics Research Lab, Stanford University, 2022), [https://plato.stanford.edu/archives/spr2022/entries/logic-paraconsistent/](https://plato.stanford.edu/archives/spr2022/entries/logic-paraconsistent/).
|
||||
<!--ID: 1721380604985-->
|
||||
|
@ -35,7 +35,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What classical principle is excluded in paraconsistent logics?
|
||||
What principle is excluded in paraconsistent logics?
|
||||
Back: The principle of explosion.
|
||||
Reference: Graham Priest, Koji Tanaka, and Zach Weber, “Paraconsistent Logic,” in _The Stanford Encyclopedia of Philosophy_, ed. Edward N. Zalta, Spring 2022 (Metaphysics Research Lab, Stanford University, 2022), [https://plato.stanford.edu/archives/spr2022/entries/logic-paraconsistent/](https://plato.stanford.edu/archives/spr2022/entries/logic-paraconsistent/).
|
||||
<!--ID: 1721380604997-->
|
||||
|
|
|
@ -673,7 +673,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
If $xRx$ for all $x \in A$, $R$ is said to be reflexive {on} $A$.
|
||||
Suppose $xRx$ for all $x \in A$, $R$ is said to be reflexive {on} $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1720967429824-->
|
||||
END%%
|
||||
|
|
|
@ -204,7 +204,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
When value does `setz` put in its specified destination?
|
||||
In terms of condition codes, what value does `setz` put in its specified destination?
|
||||
Back: `ZF`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1720992217909-->
|
||||
|
@ -220,7 +220,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
When value does `setne` put in its specified destination?
|
||||
In terms of condition codes, what value does `setne` put in its specified destination?
|
||||
Back: `~ZF`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1720992217913-->
|
||||
|
@ -236,9 +236,10 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
When value does `setz` put in its specified destination?
|
||||
In terms of condition codes, what value does `setz` put in its specified destination?
|
||||
Back: `SF`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1721387052533-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
@ -251,7 +252,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
When value does `setns` put in its specified destination?
|
||||
In terms of condition codes, what value does `setns` put in its specified destination?
|
||||
Back: `~SF`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1720992217917-->
|
||||
|
|
Loading…
Reference in New Issue