Refine notes on complete/perfect trees.
parent
262683515f
commit
9ee37c8b7d
|
@ -109,7 +109,12 @@
|
|||
"rooted-tree.png",
|
||||
"ordered-rooted-tree.png",
|
||||
"ordered-rooted-tree-cmp.png",
|
||||
"ordered-binary-tree-cmp.png"
|
||||
"ordered-binary-tree-cmp.png",
|
||||
"complete-tree.png",
|
||||
"nearly-complete-tree.png",
|
||||
"non-nearly-complete-tree.png",
|
||||
"perfect-tree.png",
|
||||
"non-complete-tree.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -221,10 +226,10 @@
|
|||
"_journal/2024-02/2024-02-21.md": "f423137ae550eb958378750d1f5e98c7",
|
||||
"_journal/2024-02-23.md": "219ce9ad15a8733edd476c97628b71fd",
|
||||
"_journal/2024-02/2024-02-22.md": "312e55d57868026f6e80f7989a889c2b",
|
||||
"c17/strings.md": "e4012ee9a18ad44370490e375ae57f09",
|
||||
"c17/strings.md": "8f23005c9f8e25c72e2ac6b74b6afd7e",
|
||||
"c17/index.md": "78576ee41d0185df82c59999142f4edb",
|
||||
"c17/escape-sequences.md": "a8b99070336878b4e8c11e9e4525a500",
|
||||
"c17/declarations.md": "7556186be0678419100ee9801e85ff06",
|
||||
"c17/declarations.md": "7d45d1b415b66916dbb908f51d034b72",
|
||||
"algorithms/sorting/merge-sort.md": "6506483f7df6507cee0407bd205dbedd",
|
||||
"_journal/2024-02-24.md": "9bb319d5014caf962a9ce3141076cff4",
|
||||
"_journal/2024-02/2024-02-23.md": "0aad297148e8cc4058b48b7e45787ca7",
|
||||
|
@ -246,7 +251,7 @@
|
|||
"_journal/2024-03-01.md": "a532486279190b0c12954966cbf8c3fe",
|
||||
"_journal/2024-02/2024-02-29.md": "0e502a2c8baf90c2f12859b03f10b5a1",
|
||||
"algebra/sequences.md": "97c217823aacf8910a1a37bde694ecfe",
|
||||
"algebra/sequences/index.md": "a15b7ce8cd040a08c7bfc8ceb6cd0525",
|
||||
"algebra/sequences/index.md": "06df0fd12c2367995037ec4c26c51a53",
|
||||
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
|
||||
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
|
||||
"algebra/sequences/triangular-numbers.md": "39a84ee317d3760a2eda7279c83e921a",
|
||||
|
@ -310,7 +315,7 @@
|
|||
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
||||
"x86-64/instructions.md": "d783bad8dd77748fb412715541cb844d",
|
||||
"git/refs.md": "954fc69004aa65b358ec5ce07c1435ce",
|
||||
"set/trees.md": "4d081c258eb662e2147d1e462193e715",
|
||||
"set/trees.md": "6c1a245f6b25838c519f5c9bcf96c369",
|
||||
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
||||
"_journal/2024-03/2024-03-23.md": "ad4e92cc2bf37f174a0758a0753bf69b",
|
||||
"_journal/2024-03/2024-03-22.md": "a509066c9cd2df692549e89f241d7bd9",
|
||||
|
@ -362,8 +367,11 @@
|
|||
"_journal/2024-04/2024-04-20.md": "043bbf73e6a317152b8fa3af03d1c57b",
|
||||
"_journal/2024-04-23.md": "a138b94e4c986773f30b3f2b375d3216",
|
||||
"_journal/2024-04/2024-04-22.md": "1737cfe64dca349f7ea3401863555d90",
|
||||
"_journal/2024-04-24.md": "388aea1c0dc33bccef57c070bf59da4d",
|
||||
"_journal/2024-04/2024-04-23.md": "010539ad366ed628faa6db384a8e4bd2"
|
||||
"_journal/2024-04-24.md": "4cb04e0dea56e0b471fc0e428471a390",
|
||||
"_journal/2024-04/2024-04-23.md": "20514052da91b06b979cacb3da758837",
|
||||
"_journal/2024-04-25.md": "10c98531cb90a6bc940ea7ae3342f98b",
|
||||
"_journal/2024-04/2024-04-24.md": "4cb04e0dea56e0b471fc0e428471a390",
|
||||
"algorithms/heaps.md": "4235ec90b6e251fc992906e0f1fe69e7"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -15,4 +15,5 @@ title: "2024-04-24"
|
|||
* Explored how to limit the number of re-renders in the application.
|
||||
* Played around with Zustand types to get TypeScript and Immer working together (WIP).
|
||||
* Read chapter 2 "Pastebin" of "Grokking the System Design Interview".
|
||||
* Read chapter 4 of HP-16C manual.
|
||||
* Read chapter 4 of HP-16C manual.
|
||||
* Add notes on iterating recurrence relations.
|
|
@ -0,0 +1,15 @@
|
|||
---
|
||||
title: "2024-04-25"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [x] Interview Prep (1 Practice Problem)
|
||||
- [x] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Talk with Mike about yesterday's "Grokking the System Interview" and "Designing Data-Intensive Applications" reading.
|
||||
* Notes on nearly complete trees. Refine terminology to favor "perfect/complete" over "complete/nearly complete".
|
||||
* Read Heapsort section in "Introduction to Algorithms". Still need to implement and translate into notes though.
|
|
@ -171,6 +171,12 @@ END%%
|
|||
|
||||
## Solving Recurrence Relations
|
||||
|
||||
We use three different strategies for solving recurrences:
|
||||
|
||||
* Telescoping
|
||||
* Iteration
|
||||
* Characteristic Polynomials
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the recurrence relation for the Fibonacci sequence?
|
||||
|
@ -245,15 +251,14 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Schematically show how telescoping can be used to solve $a_n = a_{n-1} + f(n)$.
|
||||
Schematically show how **telescoping** can be used to solve $a_n = a_{n-1} + f(n)$.
|
||||
Back: $$\begin{align*}
|
||||
a_1 - a_0 & = f(1) \\
|
||||
& \vdots \\
|
||||
a_n - a_{n-1} & = f(n) \\
|
||||
\hline
|
||||
a_n - a_0 & = \sum_{k=1}^n f(k)
|
||||
\end{align*}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
\end{align*}$$Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713810280088-->
|
||||
END%%
|
||||
|
||||
|
@ -273,6 +278,71 @@ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n
|
|||
<!--ID: 1713810280094-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean to solve a recurrence relation using iteration?
|
||||
Back: Repeatedly expand terms, starting at the initial conditions, to discover a pattern.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713998412589-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of "iterating" the following recursive definition twice? $$a_n = 3a_{n-1} + 2$$
|
||||
Back: $$\begin{align*}
|
||||
a_1 & = 3(a_0) + 2 \\
|
||||
a_2 & = 3(3(a_0) + 2) + 2
|
||||
\end{align*}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713998412595-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Schematically show how **iteration** can be used to solve $a_n = a_{n-1} + f(n)$.
|
||||
Back: $$\begin{align*}
|
||||
a_1 & = a_0 + f(1) \\
|
||||
& \vdots \\
|
||||
a_n & = (\cdots((a_0 + f(1)) + f(2)) + \cdots) + f(n) \\
|
||||
\hline
|
||||
a_n & = a_0 + \sum_{k=1}^n f(k)
|
||||
\end{align*}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713998412597-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How fast does the number of terms grow when iterating $a_n = 3a_{n-1} + 2$?
|
||||
Back: Linearly.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713998412600-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How fast does the number of terms grow when iterating $a_n = 2a_{n-1} + 3a_{n-2}$?
|
||||
Back: Exponentially (the number of terms double each iteration).
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713998412603-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why should you avoid using iteration to solve $a_n = 2a_{n-1} + 3a_{n-2}$?
|
||||
Back: The number of terms grows unwieldy very quickly.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713998412607-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When solving recurrences, is telescoping or iteration a more general technique?
|
||||
Back: Iteration.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713998536738-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
---
|
||||
title: Heaps
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algorithm::data_structure
|
||||
tags:
|
||||
- algorithm
|
||||
- data_structure
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
TODO
|
|
@ -36,7 +36,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Text is more platform-independent than binary because it is unaffected by what two properties?
|
||||
Text is more platform-independent than e.g. integer encodings because it is unaffected by what two properties?
|
||||
Back: Word size and byte ordering.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1707758281270-->
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 7.6 KiB |
Binary file not shown.
After Width: | Height: | Size: 7.6 KiB |
Binary file not shown.
After Width: | Height: | Size: 8.6 KiB |
|
@ -1,10 +1,11 @@
|
|||
---
|
||||
title: Trees
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: set::graph
|
||||
FILE TAGS: set::tree
|
||||
tags:
|
||||
- graph
|
||||
- set
|
||||
- tree
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
@ -153,6 +154,22 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1711136844955-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many levels exist in a rooted tree of height $h$?
|
||||
Back: $h + 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128242-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the height of a rooted tree with $k$ levels?
|
||||
Back: $k - 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128244-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which free trees are not considered rooted trees?
|
||||
|
@ -644,16 +661,16 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following two trees are equivalent when considered as what kind of trees?
|
||||
The following two trees are equivalent when considered as what (most specific) kind of trees?
|
||||
![[ordered-rooted-tree-cmp.png]]
|
||||
Back: Rooted/free trees.
|
||||
Back: Rooted trees.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1712407152755-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following two trees are different when considered as what kind of trees?
|
||||
The following two trees are different when considered as what (most general) kind of trees?
|
||||
![[ordered-rooted-tree-cmp.png]]
|
||||
Back: Ordered trees.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
|
@ -678,6 +695,15 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1712409466670-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Considered as positional trees, are the following trees the same?
|
||||
![[ordered-binary-tree-cmp.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714089436122-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Considered as binary trees, are the following trees the same?
|
||||
|
@ -687,13 +713,541 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1712409466676-->
|
||||
END%%
|
||||
|
||||
### Binary Trees
|
||||
%%ANKI
|
||||
Basic
|
||||
Why are these two binary trees not the same?
|
||||
![[ordered-binary-tree-cmp.png]]
|
||||
Back: `5` is a left child in the first tree but a right child in the second.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1712409466682-->
|
||||
END%%
|
||||
|
||||
### Positional Trees
|
||||
|
||||
A **positional tree** is a rooted tree in which each child is labeled with a specific positive integer. A **$k$-ary tree** is a positional tree with at most $k$ children/labels. A binary tree is a $2$-ary tree.
|
||||
|
||||
A $k$-ary tree is **full** if every node has degree $0$ or $k$. A $k$-ary tree is **perfect** if all leaves have the same depth and all internal nodes have degree $k$. A $k$-ary tree is **complete** if the last level is not filled but all leaves have the same depth and are leftmost arranged.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why aren't terms "complete/perfect" and "nearly complete/complete" quite synonymous?
|
||||
Back: In the former, "perfect" trees are a subset of "complete" trees.
|
||||
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
<!--ID: 1714088438740-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes a positional tree from a $k$-ary tree?
|
||||
Back: A $k$-ary tree cannot have child with label $> k$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128216-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a $k$-ary tree a positional tree?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714089436130-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a positional tree a $k$-ary tree?
|
||||
Back: Not necessarily.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714089436134-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes positional trees from ordered trees?
|
||||
Back: Children of the former are labeled with a distinct positive integer.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128219-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the notion of absent children a concept in ordered trees?
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438749-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the notion of absent children a concept in positional trees?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438754-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the notion of absent children a concept in $k$-ary trees?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438759-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a positional tree?
|
||||
Back: A rooted tree in which each child is labeled with a distinct positive integer.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128220-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a $k$-ary tree?
|
||||
Back: A positional tree with labels greater than $k$ missing.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128223-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of positional trees or $k$-ary trees are more general?
|
||||
Back: The positional tree.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128225-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of positional trees or ordered trees are more general?
|
||||
Back: N/A.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438763-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Is the concept of fullness related to positional trees or $k$-ary trees?
|
||||
Back: $k$-ary trees.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the concept of perfectness related to positional trees or $k$-ary trees?
|
||||
Back: $k$-ary trees.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128229-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the concept of completeness related to positional trees or $k$-ary trees?
|
||||
Back: $k$-ary trees.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088723844-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a $k$-ary tree to be full?
|
||||
Back: Each node has $0$ or $k$ children.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128231-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What degrees are permitted in a full $k$-ary tree?
|
||||
Back: $0$ or $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128233-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What degrees are permitted in a perfect $k$-ary tree?
|
||||
Back: $0$ or $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128234-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a $k$-ary tree to be perfect?
|
||||
Back: All leaves have the same depth and all internal nodes have degree $k$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128236-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the degree of an internal node in a perfect $k$-ary tree?
|
||||
Back: $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128239-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the degree of an external node in a perfect $k$-ary tree?
|
||||
Back: $0$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128241-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What recursive definition describes the number of nodes in each level of a perfect $k$-ary tree?
|
||||
Back: $a_n = k \cdot a_{n-1}$ with $a_0 = 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128248-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many nodes are in a perfect $k$-ary tree of height $h$?
|
||||
Back: $$\frac{1 - k^{h+1}}{1 - k}$$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128249-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many internal nodes are in a perfect $k$-ary tree of height $h$?
|
||||
Back: $$\frac{1 - k^h}{1 - k}$$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1714080353459-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many external nodes are in a perfect $k$-ary tree of height $h$?
|
||||
Back: $k^h$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1714080353455-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many nodes are on level $d$ of a perfect $k$-ary tree?
|
||||
Back: $k^d$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1714080353462-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of sequence describes the number of nodes in a perfect $k$-ary tree?
|
||||
Back: A geometric sequence.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128251-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the common ratio of the geometric sequence used to count nodes of a perfect $k$-ary tree?
|
||||
Back: $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128253-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a $k$-ary tree to be complete?
|
||||
Back: The last level is not filled but all leaves have the same depth and are leftmost arranged.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353480-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the minimum number of nodes in a complete $k$-ary tree of height $h$ calculated in terms of perfect $k$-ary trees?
|
||||
Back: As "the number of nodes in a perfect $k$-ary tree of height $h - 1$" plus $1$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714082676018-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the maximum number of nodes in a complete binary tree of height $h$?
|
||||
Back: $2^{h+1} - 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714082676014-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the maximum number of nodes in a complete $k$-ary tree of height $h$ calculated in terms of perfect $k$-ary trees?
|
||||
Back: As "the number of nodes in a perfect $k$-ary tree of height $h$".
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714082676022-->
|
||||
END%%
|
||||
|
||||
#### Binary Trees
|
||||
|
||||
A **binary tree** $T$ is a structure defined on a finite set of nodes that either
|
||||
|
||||
* contains no nodes, or
|
||||
* is composed of three disjoint sets of nodes: a **root** node, a **left subtree**, and a **right subtree**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a binary tree a $k$-ary tree?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714089436138-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a binary tree a positional tree?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a binary tree an ordered tree?
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714089436144-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a binary tree to be full?
|
||||
Back: Each node has $0$ or $2$ children.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128213-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a binary tree to be perfect?
|
||||
Back: Each leaf has the same depth and all internal nodes have degree $2$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714081594570-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a perfect binary tree considered full?
|
||||
Back: Yes.
|
||||
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
<!--ID: 1714088438720-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a full binary tree considered perfect?
|
||||
Back: Not necessarily.
|
||||
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
<!--ID: 1714088438726-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a full binary tree considered complete?
|
||||
Back: Not necessarily.
|
||||
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
<!--ID: 1714088438729-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a complete binary tree considered full?
|
||||
Back: Not necessarily.
|
||||
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
<!--ID: 1714088438733-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What alternative term is sometimes used in favor of a "perfect binary tree"?
|
||||
Back: A "complete binary tree".
|
||||
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
<!--ID: 1714088438737-->
|
||||
END%%
|
||||
%%ANKI
|
||||
Basic
|
||||
What alternative term is sometimes used in favor over a "complete binary tree"?
|
||||
Back: Some authors may say "nearly complete" if the last level isn't completely filled.
|
||||
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
<!--ID: 1714088438744-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What degrees are permitted in a full binary tree?
|
||||
Back: $0$ or $2$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714081594576-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What degrees are permitted in a perfect binary tree?
|
||||
Back: $0$ or $2$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714081594579-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What category of rooted tree does a binary tree fall under?
|
||||
Back: A positional tree or $k$-ary tree.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714081594582-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a binary tree a positional tree?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128227-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many nodes are in a perfect binary tree of height $h$?
|
||||
Back: $2^{h+1} - 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128255-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many internal nodes are in a perfect binary tree of height $h$?
|
||||
Back: $2^h - 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1714080353472-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many external nodes are in a perfect binary tree of height $h$?
|
||||
Back: $2^h$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1714080353469-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many nodes are on level $d$ of a perfect binary tree?
|
||||
Back: $2^d$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1714080353465-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How does the number of internal nodes compare to the number of external nodes in a perfect binary tree?
|
||||
Back: There is one more external node than internal node.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1714080353476-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a perfect binary tree?
|
||||
![[perfect-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353484-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a complete binary tree?
|
||||
![[perfect-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353488-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a full binary tree?
|
||||
![[perfect-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438768-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a perfect binary tree?
|
||||
![[complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353491-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a complete binary tree?
|
||||
![[complete-tree.png]]
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353495-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a full binary tree?
|
||||
![[complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438773-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a perfect binary tree?
|
||||
![[non-complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353498-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a complete binary tree?
|
||||
![[non-complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714080353502-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the following a full binary tree?
|
||||
![[non-complete-tree.png]]
|
||||
Back: No.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714088438777-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the minimum number of nodes in a complete binary tree of height $h$?
|
||||
Back: $2^h$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1714082676010-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the base case used in the recursive definition of a binary tree?
|
||||
|
@ -812,249 +1366,7 @@ Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition
|
|||
<!--ID: 1712409466653-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Is a binary tree a $k$-ary tree?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
ANKI%%
|
||||
Is a $k$-ary tree a positional tree?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
ANK%%
|
||||
Is a positional tree a $k$-ary tree?
|
||||
Back: Not necessarily.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why are these two binary trees not the same?
|
||||
![[ordered-binary-tree-cmp.png]]
|
||||
Back: `5` is a left child in the first tree but a right child in the second.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1712409466682-->
|
||||
END%%
|
||||
|
||||
### Positional Trees
|
||||
|
||||
A **positional tree** is a rooted tree in which each child is labeled with a specific positive integer. A **$k$-ary tree** is a positional tree with at most $k$ children/labels. A binary tree is a $2$-ary tree.
|
||||
|
||||
A $k$-ary tree is **full** if every node has degree $0$ or $k$. A $k$-ary tree is **complete** if all leaves have the same depth and all internal nodes have degree $k$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a binary tree to be full?
|
||||
Back: Each node has $0$ or $2$ children.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128213-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
What does it mean for a binary tree to be complete?
|
||||
Back: Each leaf has the same depth and all internal nodes have degree $2$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
What degrees are permitted in a full binary tree?
|
||||
Back: $0$ or $2$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
What degrees are permitted in a complete binary tree?
|
||||
Back: $0$ or $2$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
What category of rooted tree does a binary tree fall under?
|
||||
Back: A positional tree or $k$-ary tree.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes a positional tree from a $k$-ary tree?
|
||||
Back: A $k$-ary tree is a positional tree in which each node has at most $k$ children.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128216-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes positional trees from ordered trees?
|
||||
Back: The same children in different positions is considered distinct in the former.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128219-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a positional tree?
|
||||
Back: A rooted tree in which each child is labeled with a specific positive integer.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128220-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a $k$-ary tree?
|
||||
Back: A positional tree in which each node has $k$ labels with a potential child.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128223-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of positional trees or $k$-ary trees are more general?
|
||||
Back: The positional tree.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128225-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of positional trees or $k$-ary trees are more general?
|
||||
Back: The positional tree.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is a binary tree a positional tree?
|
||||
Back: Yes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128227-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Is the concept of fullness related to positional trees or $k$-ary trees?
|
||||
Back: $k$-ary trees.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the concept of completeness related to positional trees or $k$-ary trees?
|
||||
Back: $k$-ary trees.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128229-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a $k$-ary tree to be full?
|
||||
Back: Each node has $0$ or $k$ children.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128231-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What degrees are permitted in a full $k$-ary tree?
|
||||
Back: $0$ or $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128233-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What degrees are permitted in a complete $k$-ary tree?
|
||||
Back: $0$ or $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128234-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a $k$-ary tree to be complete?
|
||||
Back: All leaves have the same depth and all internal nodes have degree $k$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128236-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the degree of an internal node in a complete $k$-ary tree'?
|
||||
Back: $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128239-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the degree of an external node in a complete $k$-ary tree'?
|
||||
Back: $0$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128241-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many levels exist in a rooted tree of height $h$?
|
||||
Back: $h + 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128242-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the height of a rooted tree with $k$ levels?
|
||||
Back: $k - 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713118128244-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What recursive definition describes the number of nodes in each level of a complete $k$-ary tree?
|
||||
Back: $a_n = k \cdot a_{n-1}$ with $a_0 = 1$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128248-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What closed formula details the number of nodes in a complete $k$-ary tree of height $h$?
|
||||
Back: $$\frac{1 - k^h}{1 - k}$$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128249-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of sequence describes the number of nodes in a complete $k$-ary tree?
|
||||
Back: A geometric sequence.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128251-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the common ratio in the geometric sequence counting nodes of a complete $k$-ary tree?
|
||||
Back: $k$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128253-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many nodes are in a complete binary tree of height $h$?
|
||||
Back: $$\frac{1 - 2^h}{1 - 2} = 2^h - 1$$
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: algebra::sequence
|
||||
<!--ID: 1713118128255-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
|
||||
* Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
|
|
Loading…
Reference in New Issue