(Strict) total orders.
parent
4081f0facb
commit
9ed6b4c9a4
|
@ -168,7 +168,12 @@
|
||||||
"b-tree-initial.png",
|
"b-tree-initial.png",
|
||||||
"b-tree-inserted-b.png",
|
"b-tree-inserted-b.png",
|
||||||
"b-tree-inserted-q.png",
|
"b-tree-inserted-q.png",
|
||||||
"relation-ordering-example.png"
|
"relation-ordering-example.png",
|
||||||
|
"venn-diagram-union.png",
|
||||||
|
"venn-diagram-abs-comp.png",
|
||||||
|
"venn-diagram-intersection.png",
|
||||||
|
"venn-diagram-rel-comp.png",
|
||||||
|
"venn-diagram-symm-diff.png"
|
||||||
],
|
],
|
||||||
"File Hashes": {
|
"File Hashes": {
|
||||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||||
|
@ -348,7 +353,7 @@
|
||||||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||||
"set/index.md": "b43367d200334c53d66fc85a876b9524",
|
"set/index.md": "7354797161e6720469801839b10b64c5",
|
||||||
"set/graphs.md": "f0cd201673f2a999321dda6c726e8734",
|
"set/graphs.md": "f0cd201673f2a999321dda6c726e8734",
|
||||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||||
|
@ -534,7 +539,7 @@
|
||||||
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
||||||
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
||||||
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
||||||
"set/relations.md": "60fed0d4642d214767c077ca44983357",
|
"set/relations.md": "9323fc61ee983487e16f6dd4c1629957",
|
||||||
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
||||||
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
||||||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||||
|
@ -718,8 +723,9 @@
|
||||||
"_journal/2024-08/2024-08-14.md": "f7d1dede5ab6e4634ad9de3d3426c6f7",
|
"_journal/2024-08/2024-08-14.md": "f7d1dede5ab6e4634ad9de3d3426c6f7",
|
||||||
"_journal/2024-08-16.md": "a25c680684bcffc6a38cebbb448d9d97",
|
"_journal/2024-08-16.md": "a25c680684bcffc6a38cebbb448d9d97",
|
||||||
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
||||||
"_journal/2024-08-17.md": "f9305a6a34de9a510260bed7d2bb1aca",
|
"_journal/2024-08-17.md": "375318b50134c7cb45a8eb08bc7e586d",
|
||||||
"_journal/2024-08/2024-08-16.md": "096d9147a9e3e7a947558f8dec763a2c"
|
"_journal/2024-08/2024-08-16.md": "096d9147a9e3e7a947558f8dec763a2c",
|
||||||
|
"set/order.md": "373f4336d4845a3c2188d2215ac5fbc4"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -8,4 +8,5 @@ title: "2024-08-17"
|
||||||
- [ ] Sheet Music (10 min.)
|
- [ ] Sheet Music (10 min.)
|
||||||
- [ ] Korean (Read 1 Story)
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
* Notes on strict preorders/partial orders.
|
* Notes on strict preorders/partial [[order|orders]] and (strict) total orders.
|
||||||
|
* Finished chapter 3 "Relations and Functions".
|
|
@ -1309,6 +1309,12 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1720885546362-->
|
<!--ID: 1720885546362-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Let $Q$, $A$, and $B$ be sets. Then {$Q \restriction (A - B)$} $=$ {$(Q \restriction A) - (Q \restriction B)$}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Consider sets $A$ and $B$. How is $B \restriction A$ rewritten as a composition?
|
Consider sets $A$ and $B$. How is $B \restriction A$ rewritten as a composition?
|
||||||
|
|
|
@ -999,6 +999,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1717368558164-->
|
<!--ID: 1717368558164-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does $\bigcap\,\{x\}$ evaluate to?
|
||||||
|
Back: $x$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1723925562044-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Axiom of Choice
|
## Axiom of Choice
|
||||||
|
|
||||||
This axiom assumes the existence of some choice function capable of selecting some element from a nonempty set. Note this axiom is controversial because it is non-constructive: there is no procedure we can follow to decide which element was chosen.
|
This axiom assumes the existence of some choice function capable of selecting some element from a nonempty set. Note this axiom is controversial because it is non-constructive: there is no procedure we can follow to decide which element was chosen.
|
||||||
|
|
|
@ -0,0 +1,965 @@
|
||||||
|
---
|
||||||
|
title: Order
|
||||||
|
TARGET DECK: Obsidian::STEM
|
||||||
|
FILE TAGS: set::order
|
||||||
|
tags:
|
||||||
|
- order
|
||||||
|
- set
|
||||||
|
---
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
An **order** refers to a binary [[relations|relation]] that defines how elements of a set relate to one another in terms of "less than", "equal to", or "greater than".
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
An order is a {2}-ary relation.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1723923665315-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
In the context of order theory, what is an order?
|
||||||
|
Back: A binary relation that defines how elements of a set relate to one another.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1723923665318-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
In the context of order theory, what kind of mathematical object is an order?
|
||||||
|
Back: A (binary) relation.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1723923665319-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Preorders
|
||||||
|
|
||||||
|
A binary relation $R$ on set $A$ is a **preorder on $A$** iff it is reflexive on $A$ and transitive.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A binary relation on $A$ is a preorder on $A$ if it satisfies what two properties?
|
||||||
|
What is a preorder on $A$?
|
||||||
|
Back: Reflexivity on $A$ and transitivity.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723814834775-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which of preorders or equivalence relations are the more general concept?
|
||||||
|
Back: Preorders.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723814834780-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* are preorders named the way they are?
|
||||||
|
Back: The name suggests its almost a partial order.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723814834783-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle\}$ a preorder on $\{a\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723814834793-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$ a preorder on $\{a, b, c\}$?
|
||||||
|
Back: Because $R$ isn't reflexive on $\{a, b, c\}$.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723814834800-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle \}$ a preorder on $\{a, b\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723814834804-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Operator {$\leq$} typically denote a {non-strict} preorder.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723924394146-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
A binary relation $R$ on set $A$ is a **strict preorder on $A$** iff it is irreflexive on $A$ and transitive.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What distinguishes a preorder from a strict preorder?
|
||||||
|
Back: Strict preorders are irreflexive.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729046-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A binary relation on $A$ is a strict preorder on $A$ if it satisfies what two properties?
|
||||||
|
Back: Irreflexivity on $A$ and transitivity.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729097-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What makes a strict preorder more strict than a non-strict preorder?
|
||||||
|
Back: Strict preorders do not allow relating members to themselves.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729104-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle\}$ a strict preorder on $\{a\}$?
|
||||||
|
Back: $R$ isn't irreflexive.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729111-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$ a strict preorder on $\{a, b, c\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729117-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle \}$ a strict preorder on $\{a, b\}$?
|
||||||
|
Back: $R$ isn't irreflexive.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729122-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
A {1:strict} preorder is equivalent to a {1:strict} partial order.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729128-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* is a strict preorder also a strict partial order?
|
||||||
|
Back: Irreflexivity and transitivity imply asymmetry (and antisymmetry).
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729134-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What equivalence in order theory serves as a mnemonic for "irreflexivity and transitivity imply asymmetry"?
|
||||||
|
Back: A strict preorder is equivalent to a strict partial order.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723902729140-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* can't a nonempty preorder be asymmetric?
|
||||||
|
Back: Because reflexivity violates asymmetry.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723921757225-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Operator {$<$} typically denote a {strict} preorder.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723924394151-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Partial Orders
|
||||||
|
|
||||||
|
A binary relation $R$ on set $A$ is a **partial order on $A$** iff it is reflexive on $A$, antisymmetric, and transitive. In other words, a partial order is an antisymmetric preorder.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A binary relation on $A$ is a partial order on $A$ if it satisfies what three properties?
|
||||||
|
Back: Reflexivity on $A$, antisymmetry, and transitivity.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108460-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which of preorders and partial orders is the more general concept?
|
||||||
|
Back: Preorders.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108468-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which of partial orders and equivalence relations is the more general concept?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108472-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
A preorder satisfying {antisymmetry} is a {partial order}.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723816108477-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What two properties do partial orders and equivalence relations have in common?
|
||||||
|
Back: Reflexivity and transitivity.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108482-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What property distinguishes partial orders from equivalence relations?
|
||||||
|
Back: The former is antisymmetric whereas the latter is symmetric.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108487-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* is a partial order named the way it is?
|
||||||
|
Back: Not every pair of elements needs to be comparable.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108494-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Can a relation be both an equivalence relation and a partial order?
|
||||||
|
Back: Yes.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108501-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Can a nonempty relation be both an equivalence relation and a partial order?
|
||||||
|
Back: Yes.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108508-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle\}$ a partial order on $\{a, b\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108519-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ a partial order on $\{a, b, c\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108524-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ a partial order on $\{a, b, c\}$?
|
||||||
|
Back: It isn't antisymmetric.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723816108531-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
A binary relation $R$ on set $A$ is a **strict partial order on $A$** iff it is irreflexive on $A$, antisymmetric, and transitive.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What distinguishes a partial order from a strict partial order?
|
||||||
|
Back: Strict partial orders are irreflexive.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902024372-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A binary relation on $A$ is a strict partial order on $A$ if it satisfies what three properties?
|
||||||
|
Back: Irreflexivity on $A$, antisymmetry, and transitivity.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902024375-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What makes a strict partial order more strict than a non-strict partial order?
|
||||||
|
Back: Strict partial orders do not allow relating members to themselves.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902729147-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Operator {$<$} typically denote a {strict} partial order.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902024378-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Operator {$\leq$} typically denote a {non-strict} partial order.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902024382-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ a strict partial order on $\{a, b, c\}$?
|
||||||
|
Back: Because it isn't irreflexive.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902024388-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, c \rangle, \langle b, c \rangle\}$ a strict partial order on $\{a, b, c\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902024391-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ a strict partial order on $\{a, b\}$?
|
||||||
|
Back: It is neither antisymmetric nor transitive.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723902024394-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Equivalence Relations
|
||||||
|
|
||||||
|
A binary relation $R$ on set $A$ is an **equivalence relation on $A$** iff it is reflexive on $A$, symmetric, and transitive. In other words, an equivalence relation is a symmetric preorder.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given $R = \{\langle a, a \rangle, \langle b, b \rangle\}$, which of reflexivity (on $\{a, b\}$), symmetry, and transitivity does $R$ exhibit?
|
||||||
|
Back: Reflexivity on $\{a, b\}$ and symmetry.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1720967429839-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A binary relation on $A$ is an equivalence relation on $A$ if it satisfies what three properties?
|
||||||
|
Back: Reflexivity on $A$, symmetry, and transitivity.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1720967429853-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
A preorder satisfying {symmetry} is an {equivalence relation}.
|
||||||
|
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
<!--ID: 1723814834787-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
An equivalence relation on $A$ is a {$2$}-ary relation on $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1720967429857-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle\}$ an equivalence relation on $\{a\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1720967429864-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ an equivalence relation on $\{a\}$?
|
||||||
|
Back: $R$ is neither symmetric nor transitive.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1720967429873-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which of equivalence relations on $A$ and symmetric relations is more general?
|
||||||
|
Back: Symmetric relations.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1720969371866-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which of binary relations on $A$ and equivalence relations on $A$ is more general?
|
||||||
|
Back: Binary relations on $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1720969371869-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ an equivalence relation on $\{a, b\}$?
|
||||||
|
Back: It isn't symmetric.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1723816108538-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Equivalence Classes
|
||||||
|
|
||||||
|
The set $[x]_R$ is defined by $[x]_R = \{t \mid xRt\}$. If $R$ is an equivalence relation and $x \in \mathop{\text{fld}}R$, then $[x]_R$ is called the **equivalence class of $x$ (modulo $R$)**. If the relation $R$ is fixed by the context, we just write $[x]$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is set $[x]_R$ defined?
|
||||||
|
Back: As $\{t \mid xRt\}$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094107-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is set $[x]$ defined?
|
||||||
|
Back: As $\{t \mid xRt\}$ for some unspecified $R$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721697124837-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is an equivalence class?
|
||||||
|
Back: A set of members mutually related w.r.t an equivalence relation.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721223015574-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical object is $x$ in $[x]_R$?
|
||||||
|
Back: A set (or urelement).
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094110-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical object is $R$ in $[x]_R$?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094114-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What compact notation is used to denote $\{t \mid xRt\}$?
|
||||||
|
Back: $[x]_R$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094120-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
If {1:$R$ is an equivalence relation} and $x \in$ {2:$\mathop{\text{fld} }R$}, then $[x]_R$ is called the {2:equivalence class of $x$} (modulo {2:$R$}).
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094128-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $x$?
|
||||||
|
Back: A set (or urelement).
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094137-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$?
|
||||||
|
Back: A relation.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094144-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider an equivalence class of $x$ (modulo $R$). What condition does $x$ necessarily satisfy?
|
||||||
|
Back: $x \in \mathop{\text{fld}}R$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094149-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider an equivalence class of $x$ (modulo $R$). What condition does $R$ necessarily satisfy?
|
||||||
|
Back: $R$ is an equivalence relation.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094154-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Assume $R$ is an equivalence relation on $A$ and that $x, y \in A$. Then {1:$[x]_R$} $=$ {1:$[y]_R$} iff {2:$xRy$}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094158-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given sets $A$ and $x$, how can $[x]_A$ be rewritten as an image?
|
||||||
|
Back: $A[\![\{x\}]\!]$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721696946316-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given sets $A$ and $x$, how can we write $A[\![\{x\}]\!]$ more compactly?
|
||||||
|
Back: $[x]_A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721696946369-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Partitions
|
||||||
|
|
||||||
|
A **partition** $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that is disjoint and exhaustive.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical object is a partition of a set?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094026-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is a partition of a set $A$?
|
||||||
|
Back: A set of nonempty subsets of $A$ that is disjoint and exhaustive.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094053-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $\Pi$ be a partition of a set $A$. When does $\Pi = \varnothing$?
|
||||||
|
Back: If and only if $A = \varnothing$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094059-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $\Pi$ be a partition of set $A$. What property must each *individual* member of $\Pi$ exhibit?
|
||||||
|
Back: Each member is nonempty.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094065-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $\Pi$ be a partition of set $A$. What property must each *pair* of members of $\Pi$ exhibit?
|
||||||
|
Back: Each pair must be disjoint.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094072-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $\Pi$ be a partition of set $A$. Which property do all the members of $\Pi$ exhibit together?
|
||||||
|
Back: The members of $\Pi$ must be exhaustive.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094077-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does it mean for a partition $\Pi$ of $A$ to be exhaustive?
|
||||||
|
Back: Every member of $A$ must appear in one of the members of $\Pi$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094082-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $A$ a partition of set $A$?
|
||||||
|
Back: No.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094086-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $\{A\}$ a partition of set $A$?
|
||||||
|
Back: Yes.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094091-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2\}, \{2, 3, 4\}\}$ a partition of $A$?
|
||||||
|
Back: Each pair of members of a partition of $A$ must be disjoint.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094095-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1\}, \{2\}, \{3\}\}$ a partition of $A$?
|
||||||
|
Back: The members of a partition of $A$ must be exhaustive.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094099-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2, 3\}, \{4\}\}$ a partition of $A$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721098094103-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
Assume $\Pi$ is a partition of set $A$. Then the relation $R$ is an equivalence relation: $$xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$$
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $\Pi$ be a partition of $A$. What equivalence relation $R$ is induced?
|
||||||
|
Back: $R$ such that $xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721136390215-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What name is given to a member of a partition of a set?
|
||||||
|
Back: A cell.
|
||||||
|
Reference: “Partition of a Set,” in _Wikipedia_, June 18, 2024, [https://en.wikipedia.org/w/index.php?title=Partition_of_a_set](https://en.wikipedia.org/w/index.php?title=Partition_of_a_set&oldid=1229656401).
|
||||||
|
<!--ID: 1721696946377-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $R$ be the equivalence relation induced by partition $\Pi$ of $A$. What does $A / R$ equal?
|
||||||
|
Back: $\Pi$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721728868200-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $R$ be an equivalence relation on $A$. What equivalence relation does partition $A / R$ induce?
|
||||||
|
Back: $R$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721728868210-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Quotient Sets
|
||||||
|
|
||||||
|
If $R$ is an equivalence relation on $A$, then the **quotient set** "$A$ modulo $R$" is defined as $$A / R = \{[x]_R \mid x \in A\}.$$
|
||||||
|
|
||||||
|
The **natural map** (or **canonical map**) $\phi : A \rightarrow A / R$ is given by $$\phi(x) = [x]_R.$$
|
||||||
|
|
||||||
|
Note that $A / R$, the set of all equivalence classes, is a partition of $A$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $R$ be an equivalence relation on $A$. What partition is induced?
|
||||||
|
Back: $A / R = \{[x]_R \mid x \in A\}$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721136390208-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Quotient set $A / R$ is a partition of what set?
|
||||||
|
Back: $A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408484-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is quotient set $A / R$ pronounced?
|
||||||
|
Back: As "$A$ modulo $R$".
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408508-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider set $A / R$. What kind of mathematical object is $A$?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721698416717-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider quotient set $A / R$. What kind of mathematical object is $A$?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408514-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider set $A / R$. What kind of mathematical object is $R$?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721698416723-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider quotient set $A / R$. What kind of mathematical object is $R$?
|
||||||
|
Back: An equivalence relation on $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408520-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is set $A / R$ defined?
|
||||||
|
Back: As $\{[x]_R \mid x \in A\}$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721698416727-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is quotient set $A / R$ defined?
|
||||||
|
Back: As $\{[x]_R \mid x \in A\}$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408525-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given quotient set $A / R$, what is the domain of its natural map?
|
||||||
|
Back: $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408490-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given quotient set $A / R$, what is the codomain of its natural map?
|
||||||
|
Back: $A / R$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408495-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider quotient set $A / R$. How is the natural map $\phi$ defined?
|
||||||
|
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408501-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given quotient set $A / R$, what is the domain of its canonical map?
|
||||||
|
Back: $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408531-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Given quotient set $A / R$, what is the codomain of its canonical map?
|
||||||
|
Back: $A / R$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218408537-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider quotient set $A / R$. How is the canonical map $\phi$ defined?
|
||||||
|
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721218465987-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider set $\omega$ and equivalence relation $\sim$. How is the relevant quotient set denoted?
|
||||||
|
Back: As $\omega / {\sim}$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721219061765-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Let $R$ be an equivalence relation on $A$ and $x \in A$. Then {1:$x$} (modulo {1:$R$}) is an {2:equivalence class} whereas {2:$A$} modulo {2:$R$} is a {1:quotient set}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1721223015580-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Total Order
|
||||||
|
|
||||||
|
A binary relation $R$ on set $A$ is a **total order on $A$** iff it is reflexive on $A$, antisymmetric, transitive, and strongly connected. In other words, a total order is a strongly connected partial order.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A binary relation on $A$ is a total order on $A$ if it satisfies what four properties?
|
||||||
|
Back: Reflexivity on $A$, antisymmetry, transitivity, and strong connectivity.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665320-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* is a total order named the way it is?
|
||||||
|
Back: Every pair of elements needs to be comparable.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665321-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which of partial orders and total orders is the more general concept?
|
||||||
|
Back: Partial orders.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665322-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which property of total orders is its name attributed to?
|
||||||
|
Back: Strong connectivity.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665323-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
A {total} order is a {partial} order satisfying {strong connectivity}.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665324-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Operator {$\leq$} typically denote a {non-strict} total order.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665325-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle\}$ a total order on $\{a, b\}$?
|
||||||
|
Back: It isn't strongly connected.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665326-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, a \rangle\}$ a total order on $\{a, b\}$?
|
||||||
|
Back: It is neither reflexive nor strongly connected.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665327-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle\}$ a total order on $\{a, b\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665328-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
A binary relation $R$ on set $A$ is a **strict total order on $A$** iff it is irreflexive on $A$, antisymmetric, transitive, and connected. In other words, a strict total order is a connected strict partial order.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A binary relation on $A$ is a strict total order on $A$ if it satisfies what four properties?
|
||||||
|
Back: Irreflexivity on $A$, antisymmetry, transitivity, and connectivity.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665329-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Operator {$<$} typically denote a {strict} total order.
|
||||||
|
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
<!--ID: 1723923665330-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which of strict total orders and strict partial orders is the more general concept?
|
||||||
|
Back: Strict partial orders.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665331-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
A {strict total} order is a {strict partial} order satisfying {connectivity}.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665332-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
A {non-strict} total order satisfies {strong connectivity} whereas a {strict} total order satisfies {connectivity}.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665333-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle\}$ a strict total order on $\{a, b\}$?
|
||||||
|
Back: It is neither irreflexive nor connected.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665334-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, a \rangle, \langle b, a \rangle\}$ a strict total order on $\{a, b\}$?
|
||||||
|
Back: It isn't irreflexive.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665335-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, b \rangle\}$ a strict total order on $\{a, b\}$?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665336-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* isn't $R = \{\langle a, b \rangle, \langle b, a \rangle\}$ a strict total order on $\{a, b\}$?
|
||||||
|
Back: It is neither antisymmetric nor transitive.
|
||||||
|
Reference: “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
||||||
|
<!--ID: 1723923665337-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Bibliography
|
||||||
|
|
||||||
|
* “Equivalence Relation,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Equivalence_relation](https://en.wikipedia.org/w/index.php?title=Equivalence_relation&oldid=1235801091).
|
||||||
|
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
* “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
||||||
|
* “Partition of a Set,” in _Wikipedia_, June 18, 2024, [https://en.wikipedia.org/w/index.php?title=Partition_of_a_set](https://en.wikipedia.org/w/index.php?title=Partition_of_a_set&oldid=1229656401).
|
||||||
|
* “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
||||||
|
* “Total Order.” In _Wikipedia_, April 9, 2024. [https://en.wikipedia.org/w/index.php?title=Total_order](https://en.wikipedia.org/w/index.php?title=Total_order&oldid=1218090468).
|
|
@ -636,14 +636,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1720967429800-->
|
<!--ID: 1720967429800-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ reflexive?
|
|
||||||
Back: N/A. The question must provide a reference set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720967429804-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ reflexive on $a$?
|
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ reflexive on $a$?
|
||||||
|
@ -711,14 +703,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1721870888384-->
|
<!--ID: 1721870888384-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ irreflexive?
|
|
||||||
Back: N/A. The question must provide a reference set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721870888387-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ irreflexive on $a$?
|
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ irreflexive on $a$?
|
||||||
|
@ -1351,803 +1335,10 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1723245187669-->
|
<!--ID: 1723245187669-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
## Preorders
|
|
||||||
|
|
||||||
$R$ is a **preorder on $A$** iff $R$ is a binary relation that is reflexive on set $A$ and transitive.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What is a preorder on $A$?
|
|
||||||
Back: A binary relation on $A$ that is reflexive on $A$ and transitive.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834775-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Which of preorders or equivalence relations are the more general concept?
|
|
||||||
Back: Preorders.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834780-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* are preorders named the way they are?
|
|
||||||
Back: The name suggests its almost a partial order.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834783-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle\}$ a preorder?
|
|
||||||
Back: N/A. The question must provide a reference set.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834790-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle\}$ a preorder on $\{a\}$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834793-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$ a preorder on $\{a, b, c\}$?
|
|
||||||
Back: Because $R$ isn't reflexive on $\{a, b, c\}$.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834800-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle \}$ a preorder on $\{a, b\}$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834804-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
A **strict preorder** replaces reflexivity with irreflexivity. That is, $R$ is a strict preorder on $A$ iff $R$ is a binary relation on set $A$ that is irreflexive on $A$ and transitive.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What distinguishes a preorder from a strict preorder?
|
|
||||||
Back: Strict preorders are irreflexive.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729046-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What is a strict preorder on $A$?
|
|
||||||
Back: A binary relation on $A$ that is irreflexive on $A$ and transitive.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729097-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What makes a strict preorder more strict than a non-strict preorder?
|
|
||||||
Back: Strict preorders do not allow relating members to themselves.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729104-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle\}$ a strict preorder on $\{a\}$?
|
|
||||||
Back: $R$ isn't irreflexive.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729111-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$ a strict preorder on $\{a, b, c\}$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729117-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle \}$ a strict preorder on $\{a, b\}$?
|
|
||||||
Back: $R$ isn't irreflexive.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729122-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
A {1:strict} preorder is equivalent to a {1:strict} partial order.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729128-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* is a strict preorder also a strict partial order?
|
|
||||||
Back: Irreflexivity and transitivity imply asymmetry (and antisymmetry).
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729134-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What equivalence in order theory serves as a mnemonic for "irreflexivity and transitivity imply asymmetry"?
|
|
||||||
Back: A strict preorder is equivalent to a strict partial order.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723902729140-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
## Partial Orders
|
|
||||||
|
|
||||||
$R$ is a **partial order on $A$** iff $R$ is a binary relation on set $A$ that is reflexive on $A$, antisymmetric, and transitive. In other words, a partial order is an antisymmetric preorder.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What is a partial order on $A$?
|
|
||||||
Back: A binary relation on $A$ that is reflexive on $A$, antisymmetric, and transitive.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108460-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Which of preorders and partial orders is the more general concept?
|
|
||||||
Back: Preorders.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108468-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Which of partial orders and equivalence relations is the more general concept?
|
|
||||||
Back: N/A.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108472-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
A preorder satisfying {antisymmetry} is a {partial order}.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723816108477-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What two properties do partial orders and equivalence relations have in common?
|
|
||||||
Back: Reflexivity and transitivity.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108482-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What property distinguishes partial orders from equivalence relations?
|
|
||||||
Back: The former is antisymmetric whereas the latter is symmetric.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108487-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* is a partial order named the way it is?
|
|
||||||
Back: Not every pair of elements needs to be comparable.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108494-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Can a relation be both an equivalence relation and a partial order?
|
|
||||||
Back: Yes.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108501-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Can a nonempty relation be both an equivalence relation and a partial order?
|
|
||||||
Back: Yes.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108508-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle\}$ a partial order?
|
|
||||||
Back: N/A. The question must provide a reference set.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108514-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle\}$ a partial order on $\{a, b\}$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108519-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ a partial order on $\{a, b, c\}$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108524-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ a partial order on $\{a, b, c\}$?
|
|
||||||
Back: It isn't antisymmetric.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723816108531-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
A **strict partial order** replaces reflexivity with irreflexivity. That is, $R$ is a strict partial order on $A$ iff $R$ is a binary relation on set $A$ that is irreflexive on $A$, antisymmetric, and transitive.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What distinguishes a partial order from a strict partial order?
|
|
||||||
Back: Strict partial orders are irreflexive.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024372-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What is a strict partial order on $A$?
|
|
||||||
Back: A binary relation on $A$ that is irreflexive on $A$, antisymmetric, and transitive.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024375-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What makes a strict partial order more strict than a non-strict partial order?
|
|
||||||
Back: Strict partial orders do not allow relating members to themselves.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902729147-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
Operator {$<$} typically denote a {strict} partial order.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024378-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
Operator {$\leq$} typically denote a {non-strict} partial order.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024382-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle\}$ a strict partial order?
|
|
||||||
Back: N/A. The question must provide a reference set.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024385-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ a strict partial order on $\{a, b, c\}$?
|
|
||||||
Back: Because it isn't irreflexive.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024388-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, c \rangle, \langle b, c \rangle\}$ a strict partial order on $\{a, b, c\}$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024391-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ a strict partial order on $\{a, b\}$?
|
|
||||||
Back: It is neither antisymmetric nor transitive.
|
|
||||||
Reference: “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
<!--ID: 1723902024394-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
## Equivalence Relations
|
|
||||||
|
|
||||||
$R$ is an **equivalence relation on $A$** iff $R$ is a binary relation on set $A$ that is reflexive on $A$, symmetric, and transitive.
|
|
||||||
|
|
||||||
In other words, an equivalence relation is a symmetric preorder.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given $R = \{\langle a, a \rangle, \langle b, b \rangle\}$, which of reflexivity (on $\{a, b\}$), symmetry, and transitivity does $R$ exhibit?
|
|
||||||
Back: Reflexivity on $\{a, b\}$ and symmetry.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720967429839-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What is an equivalence relation on $A$?
|
|
||||||
Back: A binary relation on $A$ that is reflexive on $A$, symmetric, and transitive.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720967429853-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
A preorder satisfying {symmetry} is an {equivalence relation}.
|
|
||||||
Reference: “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
||||||
<!--ID: 1723814834787-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
An equivalence relation on $A$ is a {$2$}-ary relation on $A$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720967429857-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle\}$ an equivalence relation?
|
|
||||||
Back: N/A. The question must provide a reference set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720967429860-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle\}$ an equivalence relation on $\{a\}$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720967429864-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ an equivalence relation on $\{a\}$?
|
|
||||||
Back: $R$ is neither symmetric nor transitive.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720967429873-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Which of equivalence relations on $A$ and symmetric relations is more general?
|
|
||||||
Back: Symmetric relations.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720969371866-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Which of binary relations on $A$ and equivalence relations on $A$ is more general?
|
|
||||||
Back: Binary relations on $A$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1720969371869-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
*Why* isn't $R = \{\langle a, a \rangle, \langle b, c \rangle\}$ an equivalence relation on $\{a, b\}$?
|
|
||||||
Back: It isn't symmetric.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1723816108538-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
### Equivalence Classes
|
|
||||||
|
|
||||||
The set $[x]_R$ is defined by $[x]_R = \{t \mid xRt\}$. If $R$ is an equivalence relation and $x \in \mathop{\text{fld}}R$, then $[x]_R$ is called the **equivalence class of $x$ (modulo $R$)**.
|
|
||||||
|
|
||||||
If the relation $R$ is fixed by the context, we just write $[x]$.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
How is set $[x]_R$ defined?
|
|
||||||
Back: As $\{t \mid xRt\}$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094107-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
How is set $[x]$ defined?
|
|
||||||
Back: As $\{t \mid xRt\}$ for some unspecified $R$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721697124837-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What is an equivalence class?
|
|
||||||
Back: A set of members mutually related w.r.t an equivalence relation.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721223015574-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What kind of mathematical object is $x$ in $[x]_R$?
|
|
||||||
Back: A set (or urelement).
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094110-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What kind of mathematical object is $R$ in $[x]_R$?
|
|
||||||
Back: A set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094114-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What compact notation is used to denote $\{t \mid xRt\}$?
|
|
||||||
Back: $[x]_R$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094120-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
If {1:$R$ is an equivalence relation} and $x \in$ {2:$\mathop{\text{fld} }R$}, then $[x]_R$ is called the {2:equivalence class of $x$} (modulo {2:$R$}).
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094128-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $x$?
|
|
||||||
Back: A set (or urelement).
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094137-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$?
|
|
||||||
Back: A relation.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094144-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider an equivalence class of $x$ (modulo $R$). What condition does $x$ necessarily satisfy?
|
|
||||||
Back: $x \in \mathop{\text{fld}}R$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094149-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider an equivalence class of $x$ (modulo $R$). What condition does $R$ necessarily satisfy?
|
|
||||||
Back: $R$ is an equivalence relation.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094154-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
Assume $R$ is an equivalence relation on $A$ and that $x, y \in A$. Then {1:$[x]_R$} $=$ {1:$[y]_R$} iff {2:$xRy$}.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094158-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given sets $A$ and $x$, how can $[x]_A$ be rewritten as an image?
|
|
||||||
Back: $A[\![\{x\}]\!]$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721696946316-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given sets $A$ and $x$, how can we write $A[\![\{x\}]\!]$ more compactly?
|
|
||||||
Back: $[x]_A$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721696946369-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
### Partitions
|
|
||||||
|
|
||||||
A **partition** $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that is disjoint and exhaustive.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What kind of mathematical object is a partition of a set?
|
|
||||||
Back: A set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094026-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What is a partition of a set $A$?
|
|
||||||
Back: A set of nonempty subsets of $A$ that is disjoint and exhaustive.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094053-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $\Pi$ be a partition of a set $A$. When does $\Pi = \varnothing$?
|
|
||||||
Back: If and only if $A = \varnothing$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094059-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $\Pi$ be a partition of set $A$. What property must each *individual* member of $\Pi$ exhibit?
|
|
||||||
Back: Each member is nonempty.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094065-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $\Pi$ be a partition of set $A$. What property must each *pair* of members of $\Pi$ exhibit?
|
|
||||||
Back: Each pair must be disjoint.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094072-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $\Pi$ be a partition of set $A$. Which property do all the members of $\Pi$ exhibit together?
|
|
||||||
Back: The members of $\Pi$ must be exhaustive.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094077-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What does it mean for a partition $\Pi$ of $A$ to be exhaustive?
|
|
||||||
Back: Every member of $A$ must appear in one of the members of $\Pi$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094082-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Is $A$ a partition of set $A$?
|
|
||||||
Back: No.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094086-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Is $\{A\}$ a partition of set $A$?
|
|
||||||
Back: Yes.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094091-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2\}, \{2, 3, 4\}\}$ a partition of $A$?
|
|
||||||
Back: Each pair of members of a partition of $A$ must be disjoint.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094095-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1\}, \{2\}, \{3\}\}$ a partition of $A$?
|
|
||||||
Back: The members of a partition of $A$ must be exhaustive.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094099-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2, 3\}, \{4\}\}$ a partition of $A$?
|
|
||||||
Back: N/A. It is.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721098094103-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
Assume $\Pi$ is a partition of set $A$. Then the relation $R$ is an equivalence relation: $$xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$$
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $\Pi$ be a partition of $A$. What equivalence relation $R$ is induced?
|
|
||||||
Back: $R$ such that $xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721136390215-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
What name is given to a member of a partition of a set?
|
|
||||||
Back: A cell.
|
|
||||||
Reference: “Partition of a Set,” in _Wikipedia_, June 18, 2024, [https://en.wikipedia.org/w/index.php?title=Partition_of_a_set](https://en.wikipedia.org/w/index.php?title=Partition_of_a_set&oldid=1229656401).
|
|
||||||
<!--ID: 1721696946377-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $R$ be the equivalence relation induced by partition $\Pi$ of $A$. What does $A / R$ equal?
|
|
||||||
Back: $\Pi$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721728868200-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $R$ be an equivalence relation on $A$. What equivalence relation does partition $A / R$ induce?
|
|
||||||
Back: $R$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721728868210-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
### Quotient Sets
|
|
||||||
|
|
||||||
If $R$ is an equivalence relation on $A$, then the **quotient set** "$A$ modulo $R$" is defined as $$A / R = \{[x]_R \mid x \in A\}.$$
|
|
||||||
|
|
||||||
The **natural map** (or **canonical map**) $\phi : A \rightarrow A / R$ is given by $$\phi(x) = [x]_R.$$
|
|
||||||
|
|
||||||
Note that $A / R$, the set of all equivalence classes, is a partition of $A$.
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Let $R$ be an equivalence relation on $A$. What partition is induced?
|
|
||||||
Back: $A / R = \{[x]_R \mid x \in A\}$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721136390208-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Quotient set $A / R$ is a partition of what set?
|
|
||||||
Back: $A$
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408484-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
How is quotient set $A / R$ pronounced?
|
|
||||||
Back: As "$A$ modulo $R$".
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408508-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider set $A / R$. What kind of mathematical object is $A$?
|
|
||||||
Back: A set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721698416717-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider quotient set $A / R$. What kind of mathematical object is $A$?
|
|
||||||
Back: A set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408514-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider set $A / R$. What kind of mathematical object is $R$?
|
|
||||||
Back: A set.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721698416723-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider quotient set $A / R$. What kind of mathematical object is $R$?
|
|
||||||
Back: An equivalence relation on $A$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408520-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
How is set $A / R$ defined?
|
|
||||||
Back: As $\{[x]_R \mid x \in A\}$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721698416727-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
How is quotient set $A / R$ defined?
|
|
||||||
Back: As $\{[x]_R \mid x \in A\}$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408525-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given quotient set $A / R$, what is the domain of its natural map?
|
|
||||||
Back: $A$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408490-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given quotient set $A / R$, what is the codomain of its natural map?
|
|
||||||
Back: $A / R$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408495-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider quotient set $A / R$. How is the natural map $\phi$ defined?
|
|
||||||
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408501-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given quotient set $A / R$, what is the domain of its canonical map?
|
|
||||||
Back: $A$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408531-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Given quotient set $A / R$, what is the codomain of its canonical map?
|
|
||||||
Back: $A / R$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218408537-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider quotient set $A / R$. How is the canonical map $\phi$ defined?
|
|
||||||
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721218465987-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
Consider set $\omega$ and equivalence relation $\sim$. How is the relevant quotient set denoted?
|
|
||||||
Back: As $\omega / {\sim}$.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721219061765-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
Let $R$ be an equivalence relation on $A$ and $x \in A$. Then {1:$x$} (modulo {1:$R$}) is an {2:equivalence class} whereas {2:$A$} modulo {2:$R$} is a {1:quotient set}.
|
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
<!--ID: 1721223015580-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
|
* “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
|
||||||
* “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
|
* “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
|
||||||
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||||
* “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
|
* “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
|
||||||
* “Equivalence Relation,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Equivalence_relation](https://en.wikipedia.org/w/index.php?title=Equivalence_relation&oldid=1235801091).
|
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
||||||
* “Partially Ordered Set,” in _Wikipedia_, June 22, 2024, [https://en.wikipedia.org/w/index.php?title=Partially_ordered_set](https://en.wikipedia.org/w/index.php?title=Partially_ordered_set&oldid=1230452839).
|
|
||||||
* “Partition of a Set,” in _Wikipedia_, June 18, 2024, [https://en.wikipedia.org/w/index.php?title=Partition_of_a_set](https://en.wikipedia.org/w/index.php?title=Partition_of_a_set&oldid=1229656401).
|
|
||||||
* “Preorder,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Preorder](https://en.wikipedia.org/w/index.php?title=Preorder&oldid=1235839474).
|
|
Loading…
Reference in New Issue