Notes on n-ary relations.
parent
420c0d3ab9
commit
996f6c62da
|
@ -189,7 +189,7 @@
|
|||
"binary/index.md": "9089c6f0e86a0727cd03984f51350de0",
|
||||
"_journal/2024-02-09.md": "a798d35f0b2bd1da130f7ac766166109",
|
||||
"c/types.md": "cf3e66e5aee58a94db3fdf0783908555",
|
||||
"logic/quantification.md": "df25c9b73548438f010f450e3755d030",
|
||||
"logic/quantification.md": "8898b8c0b9f6818942068df0c4428b26",
|
||||
"c/declarations.md": "2de27f565d1020819008ae80593af435",
|
||||
"algorithms/sorting/bubble-sort.md": "872fb23e41fb3ac36e8c46240e9a027f",
|
||||
"_journal/2024-02-10.md": "562b01f60ea36a3c78181e39b1c02b9f",
|
||||
|
@ -503,7 +503,7 @@
|
|||
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
||||
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
||||
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
||||
"set/relations.md": "80ad79358f1ce6ecf488a059c4de78bb",
|
||||
"set/relations.md": "303f83287d33a300cf8c7fafe2834235",
|
||||
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
||||
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
||||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||
|
@ -525,7 +525,7 @@
|
|||
"_journal/2024-06/2024-06-11.md": "764ccba25646673fdf7bb6a5f090394d",
|
||||
"hashing/open-addressing.md": "c27e92f2865bbb426fdd1e30fc52f1ed",
|
||||
"hashing/closed-addressing.md": "962a48517969bf5e410cf78fc584051f",
|
||||
"_journal/2024-06-13.md": "488f93abe604977d0d150070640d50c0",
|
||||
"_journal/2024-06-13.md": "dec86b3a3e43eca306c3cf9a46b260ed",
|
||||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e"
|
||||
},
|
||||
"fields_dict": {
|
||||
|
|
|
@ -7,3 +7,6 @@ title: "2024-06-13"
|
|||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* More flashcards on the domain/range of arbitrary sets.
|
||||
* Notes/flashcards on [[relations#n-ary Relations|n-ary relations]].
|
|
@ -158,6 +158,34 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
|
|||
<!--ID: 1707494832058-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Propositional logical operator: $\forall x, \forall y, P(x, y)$ {$\Leftrightarrow$} $\forall y, \forall x, P(x, y)$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739967-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Propositional logical operator: $\forall x, \exists y, P(x, y)$ {$\Leftarrow$} {$\exists y, \forall x, P(x, y)$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739972-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Propositional logical operator: $\exists x, \forall y, P(x, y)$ {$\Rightarrow$} $\forall y, \exists x, P(x, y)$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739978-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Propositional logical operator: $\exists x, \exists y, P(x, y)$ {$\Leftrightarrow$} $\exists y, \exists x, P(x, y)$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327812365-->
|
||||
END%%
|
||||
|
||||
## Identifiers
|
||||
|
||||
Identifiers are said to be **bound** if they are parameters to a quantifier. Identifiers that are not bound are said to be **free**. A first-order logic formula is said to be in **prenex normal form** (PNF) if written in two parts: the first consisting of quantifiers and bound variables (the **prefix**), and the second consisting of no quantifiers (the **matrix**).
|
||||
|
|
|
@ -189,6 +189,82 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1718107987862-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be a set containing no ordered pairs. What is $\mathop{\text{dom}} A$?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739893-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A = \{\{\{x\}, \{x, y\}\}, \{z\}\}$. What is $\mathop{\text{dom}} A$?
|
||||
Back: $\{x\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739898-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For any set $\mathscr{A}$, $\mathop{\text{dom}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739901-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following is analagous to what predicate logical expression of commuting quantifiers?$$\mathop{\text{dom}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
|
||||
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739907-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For any set $\mathscr{A}$, $\mathop{\text{dom}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739910-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{dom}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
|
||||
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739914-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739918-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
|
||||
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739922-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739926-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
|
||||
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739931-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the range of relation $R$ denoted?
|
||||
|
@ -205,6 +281,22 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1718107987880-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ be a set containing no ordered pairs. What is $\mathop{\text{ran}} A$?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739936-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A = \{\{\{x\}, \{x, y\}\}, \{z\}\}$. What is $\mathop{\text{ran}} A$?
|
||||
Back: $\{y\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739940-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the field of relation $R$ denoted?
|
||||
|
@ -221,6 +313,236 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1718107987897-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A = \{\{\{x\}, \{x, y\}\}, \{z\}\}$. What is $\mathop{\text{fld}} A$?
|
||||
Back: $\{x, y\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739945-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $\langle x, y \rangle \in A$, what sets are in $\bigcup A$?
|
||||
Back: $\{x\}$ and $\{x, y\}$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739950-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $\langle x, y \rangle \in A$, what sets are in $\bigcup \bigcup A$?
|
||||
Back: $x$ and $y$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739955-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
$\mathop{\text{fld}} R = \bigcup \bigcup R$ is necessary for what condition?
|
||||
Back: $R$ is a relation.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718327739961-->
|
||||
END%%
|
||||
|
||||
## n-ary Relations
|
||||
|
||||
We define ordered triples as $\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle$. We define ordered quadruples as $\langle x_1, x_2, x_3, x_4 \rangle = \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$. This idea generalizes to $n$-tuples. As a special case, we define the $1$-tuple $\langle x \rangle = x$.
|
||||
|
||||
An **$n$-ary relation on $A$** is a set of ordered $n$-tuples with all **components** in $A$. Keep in mind though, a unary ($1$-ary) relation on $A$ is just a subset of $A$ and may not be a relation at all.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Ordered triple $\langle x, y, z \rangle$ is "syntactic sugar" for what?
|
||||
Back: $\langle \langle x, y \rangle, z \rangle$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620058-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Ordered quadruple $\langle x_1, x_2, x_3, x_4 \rangle$ is "syntactic sugar" for what?
|
||||
Back: $\langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620086-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A $1$-tuple $\langle x \rangle$ is "syntactic sugar" for what?
|
||||
Back: $x$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620091-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What simpler construct are $n$-tuples constructed from?
|
||||
Back: Ordered pairs.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620096-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Are $n$-tuples defined in a left- or right-associative way?
|
||||
Back: Left-associative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620101-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*What* is an $n$-tuple?
|
||||
Back: A left-associative nesting of $n$ elements as ordered pairs.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620108-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*What* is an $n$-ary relation on $A$?
|
||||
Back: A set of ordered $n$-tuples with all components in $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620114-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A $2$-ary relation on $A$ is a subset of what Cartesian product?
|
||||
Back: $A \times A$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620119-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A $1$-ary relation on $A$ is a subset of what Cartesian product?
|
||||
Back: N/A
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620126-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A $3$-ary relation on $A$ is a subset of what Cartesian product?
|
||||
Back: $(A \times A) \times A$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620132-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What terminological quirk exists with respect to $n$-ary relations on $A$?
|
||||
Back: A $1$-ary relation on $A$ may not be a relation at all.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620143-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A $1$-ary relation on $A$ is a subset of what?
|
||||
Back: $A$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620149-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For what values of $n$ is an "$n$-ary relation on $A$" a "relation"?
|
||||
Back: $n > 1$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620155-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For what values of $n$ is an "$n$-ary relation on $A$" *not* a "relation"?
|
||||
Back: Potentially when $n = 1$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620160-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What *is* $n$ in term "$n$-ary relation on $A$"?
|
||||
Back: A positive integer.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620165-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of "$n$-ary relations on $A$" and "relations" is more general?
|
||||
Back: Relations.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620169-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $\{\langle x \rangle, \langle x, y \rangle, \langle x, y, z \rangle\}$ a relation?
|
||||
Back: Indeterminate.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620173-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What must be true for $\{\langle x \rangle, \langle x, y \rangle, \langle x, y, z \rangle\}$ to be a relation?
|
||||
Back: $x$ must be an ordered pair.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620178-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't $\{\langle \varnothing \rangle, \langle \varnothing, \varnothing \rangle, \langle \varnothing, \varnothing, \varnothing \rangle\}$ a relation?
|
||||
Back: $\langle \varnothing \rangle = \varnothing$ is not an ordered pair.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620182-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a relation?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620187-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x, y, z \in A$. Is $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $2$-ary relation on $A$?
|
||||
Back: No.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620193-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x, y, z \in A$. *Why* isn't $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $2$-ary relation on $A$?
|
||||
Back: Because $\langle x, y, z \rangle \not\in A \times A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620199-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x, y, z \in A$. Is $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $3$-ary relation on $A$?
|
||||
Back: No.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620203-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x, y, z \in A$. *Why* isn't $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $3$-ary relation on $A$?
|
||||
Back: Because $\langle x, y \rangle \not\in (A \times A) \times A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718329620208-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
|
|
Loading…
Reference in New Issue