Notes on n-ary relations.

c-declarations
Joshua Potter 2024-06-13 19:47:47 -06:00
parent 420c0d3ab9
commit 996f6c62da
4 changed files with 357 additions and 4 deletions

View File

@ -189,7 +189,7 @@
"binary/index.md": "9089c6f0e86a0727cd03984f51350de0", "binary/index.md": "9089c6f0e86a0727cd03984f51350de0",
"_journal/2024-02-09.md": "a798d35f0b2bd1da130f7ac766166109", "_journal/2024-02-09.md": "a798d35f0b2bd1da130f7ac766166109",
"c/types.md": "cf3e66e5aee58a94db3fdf0783908555", "c/types.md": "cf3e66e5aee58a94db3fdf0783908555",
"logic/quantification.md": "df25c9b73548438f010f450e3755d030", "logic/quantification.md": "8898b8c0b9f6818942068df0c4428b26",
"c/declarations.md": "2de27f565d1020819008ae80593af435", "c/declarations.md": "2de27f565d1020819008ae80593af435",
"algorithms/sorting/bubble-sort.md": "872fb23e41fb3ac36e8c46240e9a027f", "algorithms/sorting/bubble-sort.md": "872fb23e41fb3ac36e8c46240e9a027f",
"_journal/2024-02-10.md": "562b01f60ea36a3c78181e39b1c02b9f", "_journal/2024-02-10.md": "562b01f60ea36a3c78181e39b1c02b9f",
@ -503,7 +503,7 @@
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
"set/relations.md": "80ad79358f1ce6ecf488a059c4de78bb", "set/relations.md": "303f83287d33a300cf8c7fafe2834235",
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
@ -525,7 +525,7 @@
"_journal/2024-06/2024-06-11.md": "764ccba25646673fdf7bb6a5f090394d", "_journal/2024-06/2024-06-11.md": "764ccba25646673fdf7bb6a5f090394d",
"hashing/open-addressing.md": "c27e92f2865bbb426fdd1e30fc52f1ed", "hashing/open-addressing.md": "c27e92f2865bbb426fdd1e30fc52f1ed",
"hashing/closed-addressing.md": "962a48517969bf5e410cf78fc584051f", "hashing/closed-addressing.md": "962a48517969bf5e410cf78fc584051f",
"_journal/2024-06-13.md": "488f93abe604977d0d150070640d50c0", "_journal/2024-06-13.md": "dec86b3a3e43eca306c3cf9a46b260ed",
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e" "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e"
}, },
"fields_dict": { "fields_dict": {

View File

@ -7,3 +7,6 @@ title: "2024-06-13"
- [x] OGS - [x] OGS
- [ ] Sheet Music (10 min.) - [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story) - [ ] Korean (Read 1 Story)
* More flashcards on the domain/range of arbitrary sets.
* Notes/flashcards on [[relations#n-ary Relations|n-ary relations]].

View File

@ -158,6 +158,34 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
<!--ID: 1707494832058--> <!--ID: 1707494832058-->
END%% END%%
%%ANKI
Cloze
Propositional logical operator: $\forall x, \forall y, P(x, y)$ {$\Leftrightarrow$} $\forall y, \forall x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739967-->
END%%
%%ANKI
Cloze
Propositional logical operator: $\forall x, \exists y, P(x, y)$ {$\Leftarrow$} {$\exists y, \forall x, P(x, y)$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739972-->
END%%
%%ANKI
Cloze
Propositional logical operator: $\exists x, \forall y, P(x, y)$ {$\Rightarrow$} $\forall y, \exists x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739978-->
END%%
%%ANKI
Cloze
Propositional logical operator: $\exists x, \exists y, P(x, y)$ {$\Leftrightarrow$} $\exists y, \exists x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327812365-->
END%%
## Identifiers ## Identifiers
Identifiers are said to be **bound** if they are parameters to a quantifier. Identifiers that are not bound are said to be **free**. A first-order logic formula is said to be in **prenex normal form** (PNF) if written in two parts: the first consisting of quantifiers and bound variables (the **prefix**), and the second consisting of no quantifiers (the **matrix**). Identifiers are said to be **bound** if they are parameters to a quantifier. Identifiers that are not bound are said to be **free**. A first-order logic formula is said to be in **prenex normal form** (PNF) if written in two parts: the first consisting of quantifiers and bound variables (the **prefix**), and the second consisting of no quantifiers (the **matrix**).

View File

@ -189,6 +189,82 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1718107987862--> <!--ID: 1718107987862-->
END%% END%%
%%ANKI
Basic
Let $A$ be a set containing no ordered pairs. What is $\mathop{\text{dom}} A$?
Back: $\varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739893-->
END%%
%%ANKI
Basic
Let $A = \{\{\{x\}, \{x, y\}\}, \{z\}\}$. What is $\mathop{\text{dom}} A$?
Back: $\{x\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739898-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{dom}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739901-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers?$$\mathop{\text{dom}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739907-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{dom}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739910-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{dom}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739914-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739918-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739922-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739926-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739931-->
END%%
%%ANKI %%ANKI
Basic Basic
How is the range of relation $R$ denoted? How is the range of relation $R$ denoted?
@ -205,6 +281,22 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1718107987880--> <!--ID: 1718107987880-->
END%% END%%
%%ANKI
Basic
Let $A$ be a set containing no ordered pairs. What is $\mathop{\text{ran}} A$?
Back: $\varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739936-->
END%%
%%ANKI
Basic
Let $A = \{\{\{x\}, \{x, y\}\}, \{z\}\}$. What is $\mathop{\text{ran}} A$?
Back: $\{y\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739940-->
END%%
%%ANKI %%ANKI
Basic Basic
How is the field of relation $R$ denoted? How is the field of relation $R$ denoted?
@ -221,6 +313,236 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1718107987897--> <!--ID: 1718107987897-->
END%% END%%
%%ANKI
Basic
Let $A = \{\{\{x\}, \{x, y\}\}, \{z\}\}$. What is $\mathop{\text{fld}} A$?
Back: $\{x, y\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739945-->
END%%
%%ANKI
Basic
If $\langle x, y \rangle \in A$, what sets are in $\bigcup A$?
Back: $\{x\}$ and $\{x, y\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739950-->
END%%
%%ANKI
Basic
If $\langle x, y \rangle \in A$, what sets are in $\bigcup \bigcup A$?
Back: $x$ and $y$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739955-->
END%%
%%ANKI
Basic
$\mathop{\text{fld}} R = \bigcup \bigcup R$ is necessary for what condition?
Back: $R$ is a relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739961-->
END%%
## n-ary Relations
We define ordered triples as $\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle$. We define ordered quadruples as $\langle x_1, x_2, x_3, x_4 \rangle = \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$. This idea generalizes to $n$-tuples. As a special case, we define the $1$-tuple $\langle x \rangle = x$.
An **$n$-ary relation on $A$** is a set of ordered $n$-tuples with all **components** in $A$. Keep in mind though, a unary ($1$-ary) relation on $A$ is just a subset of $A$ and may not be a relation at all.
%%ANKI
Basic
Ordered triple $\langle x, y, z \rangle$ is "syntactic sugar" for what?
Back: $\langle \langle x, y \rangle, z \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620058-->
END%%
%%ANKI
Basic
Ordered quadruple $\langle x_1, x_2, x_3, x_4 \rangle$ is "syntactic sugar" for what?
Back: $\langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620086-->
END%%
%%ANKI
Basic
A $1$-tuple $\langle x \rangle$ is "syntactic sugar" for what?
Back: $x$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620091-->
END%%
%%ANKI
Basic
What simpler construct are $n$-tuples constructed from?
Back: Ordered pairs.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620096-->
END%%
%%ANKI
Basic
Are $n$-tuples defined in a left- or right-associative way?
Back: Left-associative.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620101-->
END%%
%%ANKI
Basic
*What* is an $n$-tuple?
Back: A left-associative nesting of $n$ elements as ordered pairs.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620108-->
END%%
%%ANKI
Basic
*What* is an $n$-ary relation on $A$?
Back: A set of ordered $n$-tuples with all components in $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620114-->
END%%
%%ANKI
Basic
A $2$-ary relation on $A$ is a subset of what Cartesian product?
Back: $A \times A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620119-->
END%%
%%ANKI
Basic
A $1$-ary relation on $A$ is a subset of what Cartesian product?
Back: N/A
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620126-->
END%%
%%ANKI
Basic
A $3$-ary relation on $A$ is a subset of what Cartesian product?
Back: $(A \times A) \times A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620132-->
END%%
%%ANKI
Basic
What terminological quirk exists with respect to $n$-ary relations on $A$?
Back: A $1$-ary relation on $A$ may not be a relation at all.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620143-->
END%%
%%ANKI
Basic
A $1$-ary relation on $A$ is a subset of what?
Back: $A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620149-->
END%%
%%ANKI
Basic
For what values of $n$ is an "$n$-ary relation on $A$" a "relation"?
Back: $n > 1$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620155-->
END%%
%%ANKI
Basic
For what values of $n$ is an "$n$-ary relation on $A$" *not* a "relation"?
Back: Potentially when $n = 1$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620160-->
END%%
%%ANKI
Basic
What *is* $n$ in term "$n$-ary relation on $A$"?
Back: A positive integer.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620165-->
END%%
%%ANKI
Basic
Which of "$n$-ary relations on $A$" and "relations" is more general?
Back: Relations.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620169-->
END%%
%%ANKI
Basic
Is $\{\langle x \rangle, \langle x, y \rangle, \langle x, y, z \rangle\}$ a relation?
Back: Indeterminate.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620173-->
END%%
%%ANKI
Basic
What must be true for $\{\langle x \rangle, \langle x, y \rangle, \langle x, y, z \rangle\}$ to be a relation?
Back: $x$ must be an ordered pair.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620178-->
END%%
%%ANKI
Basic
*Why* isn't $\{\langle \varnothing \rangle, \langle \varnothing, \varnothing \rangle, \langle \varnothing, \varnothing, \varnothing \rangle\}$ a relation?
Back: $\langle \varnothing \rangle = \varnothing$ is not an ordered pair.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620182-->
END%%
%%ANKI
Basic
Is $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a relation?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620187-->
END%%
%%ANKI
Basic
Let $x, y, z \in A$. Is $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $2$-ary relation on $A$?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620193-->
END%%
%%ANKI
Basic
Let $x, y, z \in A$. *Why* isn't $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $2$-ary relation on $A$?
Back: Because $\langle x, y, z \rangle \not\in A \times A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620199-->
END%%
%%ANKI
Basic
Let $x, y, z \in A$. Is $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $3$-ary relation on $A$?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620203-->
END%%
%%ANKI
Basic
Let $x, y, z \in A$. *Why* isn't $\{\langle x, y \rangle, \langle x, y, z \rangle\}$ a $3$-ary relation on $A$?
Back: Because $\langle x, y \rangle \not\in (A \times A) \times A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620208-->
END%%
## Bibliography ## Bibliography
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305). * “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).