Reorganize integral property flashcards.

main
Joshua Potter 2024-12-30 19:58:36 -07:00
parent 6918ef6869
commit 93fd8d7a6c
2 changed files with 202 additions and 110 deletions

View File

@ -1003,7 +1003,7 @@
"_journal/2024-12/2024-12-04.md": "965f6619edf1002d960203e3e12a413b", "_journal/2024-12/2024-12-04.md": "965f6619edf1002d960203e3e12a413b",
"_journal/2024-12-06.md": "d75323d0fec57f4fc1f13cb4370df18d", "_journal/2024-12-06.md": "d75323d0fec57f4fc1f13cb4370df18d",
"_journal/2024-12/2024-12-05.md": "4f3b1e7a43e01cc97b0eed6fbc6c1f96", "_journal/2024-12/2024-12-05.md": "4f3b1e7a43e01cc97b0eed6fbc6c1f96",
"calculus/integrals.md": "1d34fb199b962f61cdc22f350817d5c3", "calculus/integrals.md": "7c10ec02401c982039ed421c4435c0ad",
"_journal/2024-12-07.md": "bfb6c4db0acbacba19f03a04ec29fa5c", "_journal/2024-12-07.md": "bfb6c4db0acbacba19f03a04ec29fa5c",
"_journal/2024-12/2024-12-06.md": "d73b611d2d15827186a0252d9b9a6580", "_journal/2024-12/2024-12-06.md": "d73b611d2d15827186a0252d9b9a6580",
"_journal/2024-12-08.md": "5662897539b222db1af45dcd217f0796", "_journal/2024-12-08.md": "5662897539b222db1af45dcd217f0796",
@ -1077,7 +1077,9 @@
"_journal/2024-12-29.md": "e7808872f56a12b51165fc86a1c48e60", "_journal/2024-12-29.md": "e7808872f56a12b51165fc86a1c48e60",
"_journal/2024-12/2024-12-28.md": "1ad3caec4ea6f597cc5156f19b274c50", "_journal/2024-12/2024-12-28.md": "1ad3caec4ea6f597cc5156f19b274c50",
"data-models/rdf/sparql.md": "579cede269025cde2314c3052f272367", "data-models/rdf/sparql.md": "579cede269025cde2314c3052f272367",
"data-models/rdf/index.md": "979fa61c449648774438c4f29f782602" "data-models/rdf/index.md": "979fa61c449648774438c4f29f782602",
"_journal/2024-12-30.md": "69762de7ad0fe8ee02b9daaaa2c1745c",
"_journal/2024-12/2024-12-29.md": "e7808872f56a12b51165fc86a1c48e60"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -11,16 +11,128 @@ tags:
The integral is usually defined first in terms of step functions and then general ordinate sets. It is closely tied to [[area]]. In particular, the integral of some nonnegative function on a closed interval is defined so that its area is equal to the area of the ordinate set in question. The integral is usually defined first in terms of step functions and then general ordinate sets. It is closely tied to [[area]]. In particular, the integral of some nonnegative function on a closed interval is defined so that its area is equal to the area of the ordinate set in question.
Suppose $f$ is [[#Integrable Functions|integrable]] on interval $[a, b]$. Then the **integral** of $f$ from $a$ to $b$ is denoted as $$\int_a^b f(x) \,dx.$$
The **lower limit of integration** is $a$. The **upper limit of integration** is $b$. Together they form the **limits of integration**. $f(x)$ is called the **integrand** whereas $dx$ is called the **differential**. Furthermore, we define $$\int_a^b f(x) \,dx = -\int_b^a f(x) \,dx \quad\text{and}\quad \int_a^a f(x)\,dx = 0.$$
%%ANKI
Basic
How is the integral of $f$ from $a$ to $b$ denoted?
Back: $\int_a^b f(x) \,dx$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215063-->
END%%
%%ANKI
Basic
What is $\int_a^b f(x) \,dx$ called?
Back: The integral of $f$ from $a$ to $b$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215070-->
END%%
%%ANKI
Basic
Integral $\int_a^b f(x) \,dx$ is assumed to be defined on what interval?
Back: Closed interval $[a, b]$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215074-->
END%%
%%ANKI
Basic
Let $f$ be integrable over $[a, b]$. How is $\int_b^a f(x) \,dx$ defined?
Back: As $-\int_a^b f(x) \,dx$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555507-->
END%%
%%ANKI
Basic
Let $f$ be integrable over $[a, b]$. What does $\int_a^b f(x) \,dx$ evaluate to after swapping limits of integration?
Back: $-\int_b^a f(x) \,dx$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555515-->
END%%
%%ANKI
Basic
Let $f$ be integrable over $[a, b]$. What does $\int_a^a f(x) \,dx$ evaluate to?
Back: $0$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555518-->
END%%
%%ANKI
Basic
What name is given to $a$ in $\int_a^b f(x) \,dx$?
Back: The lower limit of integration.
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1734816555521-->
END%%
%%ANKI
Basic
What does the lower limit of integration refer to in $\int_a^b f(x) \,dx$?
Back: $a$
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1735613867214-->
END%%
%%ANKI
Basic
What name is given to $b$ in $\int_a^b f(x) \,dx$?
Back: The upper limit of integration.
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1734816555523-->
END%%
%%ANKI
Basic
What name is given collectively to $a$ and $b$ in $\int_a^b f(x) \,dx$?
Back: The limits of integration.
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1734816555526-->
END%%
%%ANKI
Basic
What name is given to $f(x)$ in $\int_a^b f(x) \,dx$?
Back: The integrand.
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1735613867216-->
END%%
%%ANKI
Basic
What does the integrand refer to in $\int_a^b f(x) \,dx$?
Back: $f(x)$
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1735613867218-->
END%%
%%ANKI
Basic
What name is given to $dx$ in $\int_a^b f(x) \,dx$?
Back: The differential.
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1735613867219-->
END%%
%%ANKI
Basic
What does the differential refer to in $\int_a^b f(x) \,dx$?
Back: $dx$
Reference: “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
<!--ID: 1735613867220-->
END%%
## Step Functions ## Step Functions
Let $s$ be a step function defined on [[intervals|interval]] $[a, b]$, and let $P = \{x_0, x_1, \ldots, x_n\}$ be a [[intervals#Partitions|partition]] of $[a, b]$ such that $s$ is constant on the open subintervals of $P$. Denote by $s_k$ the constant value that $s$ takes in the $k$th open subinterval, so that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k, \quad k = 1, 2, \ldots, n.$$ Let $s$ be a step function defined on [[intervals|interval]] $[a, b]$, and let $P = \{x_0, x_1, \ldots, x_n\}$ be a [[intervals#Partitions|partition]] of $[a, b]$ such that $s$ is constant on the open subintervals of $P$. Denote by $s_k$ the constant value that $s$ takes in the $k$th open subinterval, so that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k, \quad k = 1, 2, \ldots, n.$$
The **integral of $s$ from $a$ to $b$**, denoted by the symbol $\int_a^b s(x)\,dx$, is defined by the following formula: $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$ The **integral of $s$ from $a$ to $b$**, denoted by the symbol $\int_a^b s(x)\,dx$, is defined by the following formula: $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$
Furthermore, $$\int_a^b s(x) \,dx = -\int_b^a s(x) \,dx$$
and $$\int_a^a s(x)\,dx = 0.$$
%%ANKI %%ANKI
Basic Basic
Apostol first introduces the integral for the ordinate sets of what kind of function? Apostol first introduces the integral for the ordinate sets of what kind of function?
@ -31,36 +143,12 @@ END%%
%%ANKI %%ANKI
Basic Basic
How is the integral of $s$ from $a$ to $b$ denoted? Let $s$ be a step function. How is $\int_a^b s(x) \,dx$ defined?
Back: $\int_a^b s(x) \,dx$ Back: Given partition $P = \{x_0 = a, x_1, \ldots, x_n = b\}$ with constant value $s_k$ on the $k$th open subinterval, $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215063-->
END%%
%%ANKI
Basic
Let $s$ be a step function. How is the integral of $s$ from $a$ to $b$ defined?
Back: Given partition $P = \{x_0, x_1, \ldots, x_n\}$ with constant value $s_k$ on the $k$th open subinterval, $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215067--> <!--ID: 1733520215067-->
END%% END%%
%%ANKI
Basic
What is $\int_a^b s(x) \,dx$ called?
Back: The integral of $s$ from $a$ to $b$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215070-->
END%%
%%ANKI
Basic
Integral $\int_a^b s(x) \,dx$ is assumed to be defined on what interval?
Back: Closed interval $[a, b]$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215074-->
END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ be a step function. $\int_a^b s(x) \,dx$ corresponds to what big operator? Let $s$ be a step function. $\int_a^b s(x) \,dx$ corresponds to what big operator?
@ -119,7 +207,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ be a step function. How does $\int_a^b s(x) \,dx$ relate to refinements of $s$'s partition? Let $s$ be a step function. How does $\int_a^b s(x) \,dx$ change as $s$'s partition is refined?
Back: N/A. Its value does not change. Back: N/A. Its value does not change.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215118--> <!--ID: 1733520215118-->
@ -127,8 +215,8 @@ END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ be a constant function. What does $\int_a^b s(x) \,dx$ evaluate to? Let $f$ be a constant function. What does $\int_a^b f(x) \,dx$ evaluate to?
Back: $c(b - a)$ where $s(x) = c$ for all $x \in [a, b]$. Back: $c(b - a)$ where $f(x) = c$ for all $x \in [a, b]$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1733520215126--> <!--ID: 1733520215126-->
END%% END%%
@ -140,106 +228,62 @@ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Int
<!--ID: 1733520215132--> <!--ID: 1733520215132-->
END%% END%%
%%ANKI
Basic
Let $s$ be a step function over $[a, b]$. How is $\int_b^a s(x) \,dx$ defined?
Back: As $-\int_a^b s(x) \,dx$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555507-->
END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ be a step function over $[a, b]$. How is $\int_a^b s(x) \,dx$ defined? Let $s$ be a step function over $[a, b]$. How is $\int_a^b s(x) \,dx$ defined?
Back: Given partition $P = \{x_0, x_1, \ldots, x_n\}$ with constant value $s_k$ on the $k$th open subinterval, $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$ Back: Given partition $P = \{x_0 = a, x_1, \ldots, x_n = b\}$ with constant value $s_k$ on the $k$th open subinterval, $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555512--> <!--ID: 1734816555512-->
END%% END%%
%%ANKI ## Integrable Functions
Basic
Let $s$ be a step function over $[a, b]$. What does $\int_a^b s(x) \,dx$ evaluate to after swapping limits of integration? TODO
Back: $-\int_b^a s(x) \,dx$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). ### Integrand Additivity
<!--ID: 1734816555515-->
END%% Let $f$ and $g$ be integrable over $[a, b]$. Then $$\int_a^b f(x) + g(x) \,dx = \int_a^b f(x) \,dx + \int_a^b g(x) \,dx$$
%%ANKI %%ANKI
Basic Basic
Let $s$ be a step function over $[a, b]$. What does $\int_a^a s(x) \,dx$ evaluate to? What does the additivity property w.r.t. the integrand state?
Back: $0$. Back: Let $f$ and $g$ be integrable over $[a, b]$. Then $\int_a^b f(x) + g(x) \,dx = \int_a^b f(x) \,dx + \int_a^b g(x) \,dx$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555518-->
END%%
%%ANKI
Basic
Let $s$ be a step function over $[a, b]$. What name is given to $a$ in $\int_a^b s(x) \,dx$?
Back: The lower limit of integration.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555521-->
END%%
%%ANKI
Basic
Let $s$ be a step function over $[a, b]$. What name is given to $b$ in $\int_a^b s(x) \,dx$?
Back: The upper limit of integration.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555523-->
END%%
%%ANKI
Basic
Let $s$ be a step function over $[a, b]$. What name is given to $a$ and $b$ in $\int_a^b s(x) \,dx$?
Back: The limits of integration.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734816555526-->
END%%
### Additivity
Let $s$ and $t$ be step functions defined on $[a, b]$. Then $$\int_a^b s(x) + t(x) \,dx = \int_a^b s(x) \,dx + \int_a^b t(x) \,dx$$
%%ANKI
Basic
Let $s$ and $t$ be step functions over $[a, b]$. What does the additive property of integrals state?
Back: $\int_a^b s(x) + t(x) \,dx = \int_a^b s(x) \,dx + \int_a^b t(x) \,dx$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463659--> <!--ID: 1734814463659-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ and $t$ be step functions over $[a, b]$. What is the following identity called? $$\int_a^b s(x) + t(x) \,dx = \int_a^b s(x) \,dx + \int_a^b t(x) \,dx$$ What is the following identity called? $$\int_a^b f(x) + g(x) \,dx = \int_a^b f(x) \,dx + \int_a^b g(x) \,dx$$
Back: The additive property. Back: The additive property w.r.t. the integrand.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463668--> <!--ID: 1734814463668-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ and $t$ be step functions over $[a, b]$. How is the following more compactly written? $$\int_a^b s(x) \,dx + \int_a^b t(x) \,dx$$ Let $f$ and $g$ be integrable over $[a, b]$. How is the following more compactly written? $$\int_a^b f(x) \,dx + \int_a^b g(x) \,dx$$
Back: $\int_a^b s(x) + t(x) \,dx$ Back: As $\int_a^b f(x) + g(x) \,dx$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463673--> <!--ID: 1734814463673-->
END%% END%%
### Homogeneousness ### Homogeneousness
Let $s$ be a step function defined on $[a, b]$. Let $c \in \mathbb{R}$. Then $$\int_a^b c \cdot s(x) \,dx = c\int_a^b s(x) \,dx$$ Let $f$ be integrable over $[a, b]$ and $c \in \mathbb{R}$. Then $$\int_a^b c \cdot f(x) \,dx = c\int_a^b f(x) \,dx$$
%%ANKI %%ANKI
Basic Basic
Let $s$ be a step function over $[a, b]$. What does the homogeneous property of integrals state? What does the homogeneous property of integrals state?
Back: For all $c \in \mathbb{R}$, $\int_a^b c \cdot s(x) \,dx = c \int_a^b s(x) \,dx$. Back: Let $f$ be integrable over $[a, b]$ and $c \in \mathbb{R}$. Then $\int_a^b c \cdot f(x) \,dx = c \int_a^b f(x) \,dx$.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463679--> <!--ID: 1734814463679-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ be a step function defined over $[a, b]$ and $c \in \mathbb{R}$. What is the following identity called? $$\int_a^b c \cdot s(x) \,dx = c\int_a^b s(x) \,dx$$ What is the following identity called? $$\int_a^b c \cdot f(x) \,dx = c\int_a^b f(x) \,dx$$
Back: The homogeneous property. Back: The homogeneous property.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
@ -248,19 +292,19 @@ END%%
### Linearity ### Linearity
Let $s$ and $t$ be step functions defined on $[a, b]$. Let $c_1, c_2 \in \mathbb{R}$. Then $$\int_a^b [c_1s(x) + c_2t(x)] \,dx = c_1 \int_a^b s(x) \,dx + c_2 \int_a^b t(x) \,dx$$ Let $f$ and $g$ be integrable over $[a, b]$. Let $c_1, c_2 \in \mathbb{R}$. Then $$\int_a^b [c_1f(x) + c_2g(x)] \,dx = c_1 \int_a^b f(x) \,dx + c_2 \int_a^b g(x) \,dx$$
%%ANKI %%ANKI
Basic Basic
Let $s$ and $t$ be step functions over $[a, b]$ and $c_1, c_2 \in \mathbb{R}$. What does the linearity property of integrals state? What does the linearity property of integrals state?
Back: $\int_a^b [c_1 s(x) + c_2 t(x)] \,dx = c_1 \int_a^b s(x) \,dx + c_2 \int_a^b t(x) \,dx$ Back: Let $f$ and $g$ be integrable over $[a, b]$ and $c_1, c_2 \in \mathbb{R}$. Then $$\int_a^b [c_1 f(x) + c_2 g(x)] \,dx = c_1 \int_a^b f(x) \,dx + c_2 \int_a^b g(x) \,dx$$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463699--> <!--ID: 1734814463699-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ and $t$ be step functions over $[a, b]$ and $c_1, c_2 \in \mathbb{R}$. What is the following identity called? $$\int_a^b [c_1s(x) + c_2t(x)] \,dx = c_1 \int_a^b s(x) \,dx + c_2 \int_a^b t(x) \,dx$$ What is the following identity called? $$\int_a^b [c_1f(x) + c_2g(x)] \,dx = c_1 \int_a^b f(x) \,dx + c_2 \int_a^b g(x) \,dx$$
Back: The linearity property. Back: The linearity property.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463704--> <!--ID: 1734814463704-->
@ -269,33 +313,33 @@ END%%
%%ANKI %%ANKI
Basic Basic
The linearity property is immediately derived from what other two properties? The linearity property is immediately derived from what other two properties?
Back: The additive and homogeneous properties. Back: The additive property w.r.t. the integrand and homogeneousness.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463710--> <!--ID: 1734814463710-->
END%% END%%
%%ANKI %%ANKI
Cloze Cloze
The {linearity} property of integrals is a combination of the {additive} and {homogenous} properties. The {linearity} property of integrals is an immediate consequence of {additivity w.r.t the integrand} and {homogenousness}.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734814463693--> <!--ID: 1734814463693-->
END%% END%%
### Comparison Theorem ### Comparison Theorem
Let $s$ and $t$ be step functions defined on $[a, b]$. Suppose $s(x) < t(x)$ for all $x \in [a, b]$. Then $$\int_a^b s(x) \,dx < \int_a^b t(x) \,dx$$ Let $f$ and $b$ be integrable over $[a, b]$. If $f(x) \leq g(x)$ for all $x \in [a, b]$, then $$\int_a^b f(x) \,dx \leq \int_a^b g(x) \,dx$$
%%ANKI %%ANKI
Basic Basic
Let $s$ and $t$ be step functions over $[a, b]$. What does the comparison theorem of integrals state? What does the comparison theorem for integrals state?
Back: If $s(x) < t(x)$ for all $x \in [a, b]$, then $\int_a^b s(x) \,dx < \int_a^b t(x) \,dx$. Back: Let $f$ and $g$ be integrable over $[a, b]$. If $f(x) \leq g(x)$ for all $x \in [a, b]$, then $$\int_a^b f(x) \,dx \leq \int_a^b g(x) \,dx.$$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734815755275--> <!--ID: 1734815755275-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Let $s$ and $t$ be step functions over $[a, b]$ such that $s(x) < t(x)$ for all $x \in [a, b]$. What is the following called? $$\int_a^b s(x) \,dx < \int_a^b t(x) \,dx$$ Let $f$ and $g$ be integrable over $[a, b]$ such that $f(x) \leq g(x)$ for all $x \in [a, b]$. What is the following called? $$\int_a^b f(x) \,dx \leq \int_a^b g(x) \,dx$$
Back: The comparison theorem. Back: The comparison theorem.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734815755282--> <!--ID: 1734815755282-->
@ -303,20 +347,66 @@ END%%
%%ANKI %%ANKI
Basic Basic
The comparison theorem of step function integrals corresponds to what property of area? The comparison theorem of integrals corresponds to what property of area?
Back: The monotone property of area. Back: The monotone property.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734815755285--> <!--ID: 1734815755285-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
The monotone property of area corresponds to what theorem of step function integrals? The monotone property of area corresponds to what basic property of integrals?
Back: The comparison theorem. Back: The comparison theorem.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1734815755288--> <!--ID: 1734815755288-->
END%% END%%
### Interval of Integration Additivity
If two of the following three integrals exist, the third also exists, and we have $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx = \int_a^c f(x) \,dx$$
%%ANKI
Basic
What does the additivity property w.r.t. the interval of integration state?
Back: If two of the following three integrals exist, the third also exists, and we have $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx = \int_a^c f(x) \,dx$$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1735613867221-->
END%%
%%ANKI
Basic
Let $f$ be integrable over an interval containing $a$, $b$, and $c$. What is the following identity called? $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx = \int_a^c f(x) \,dx$$
Back: The additive property w.r.t. the interval of integration.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1735613867222-->
END%%
%%ANKI
Basic
Assume the following integrals exist. How is the following written more compactly? $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx$$
Back: $\int_a^c f(x) \,dx$
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1735613867223-->
END%%
%%ANKI
Basic
The additvity theorem w.r.t. intervals of integration corresponds to what property of area?
Back: The additive property of area.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1735613867224-->
END%%
%%ANKI
Basic
The additive property of area corresponds to what basic property of integrals?
Back: The additive property w.r.t. the interval of integration.
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
<!--ID: 1735613867225-->
END%%
## Bibliography ## Bibliography
* “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
* Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). * Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).