Fixup flagged flashcards.
parent
19f7f4f9aa
commit
906ef40bc6
|
@ -187,7 +187,15 @@
|
|||
"graph-induced-subgraph.png",
|
||||
"graph-subgraph.png",
|
||||
"graph-non-subgraph.png",
|
||||
"cyclic-undirected-labelled.png"
|
||||
"cyclic-undirected-labelled.png",
|
||||
"free-tree.png",
|
||||
"forest.png",
|
||||
"cyclic-undirected.png",
|
||||
"rooted-tree.png",
|
||||
"ordered-rooted-tree-cmp.png",
|
||||
"ordered-binary-tree-cmp.png",
|
||||
"lcrs-nodes.png",
|
||||
"binary-tree-nodes.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -388,7 +396,7 @@
|
|||
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
||||
"x86-64/instructions.md": "06b7fbe1a7a9568b80239310eb72e87a",
|
||||
"git/refs.md": "e20c2c9b14ba6c2bd235416017c5c474",
|
||||
"set/trees.md": "7fe6c967b4221afff80ec0a3a85517c5",
|
||||
"set/trees.md": "f5c6cd3bf1834b84fb0a55114a9c80f6",
|
||||
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
||||
"_journal/2024-03/2024-03-23.md": "ad4e92cc2bf37f174a0758a0753bf69b",
|
||||
"_journal/2024-03/2024-03-22.md": "a509066c9cd2df692549e89f241d7bd9",
|
||||
|
@ -563,7 +571,7 @@
|
|||
"x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656",
|
||||
"x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199",
|
||||
"x86-64/instructions/arithmetic.md": "271218d855e7291f119f96e91f582738",
|
||||
"x86-64/instructions/access.md": "c19bc3392cf493fcc9becf46c818cc50",
|
||||
"x86-64/instructions/access.md": "3efe399b89b947ab280dc1e045675390",
|
||||
"x86-64/instructions/index.md": "72c19067e938ab39ea51d25d6ac2bad9",
|
||||
"_journal/2024-06-09.md": "935b3ddf65c51e680ac5c000c7e380af",
|
||||
"_journal/2024-06/2024-06-08.md": "9e1ebc8882a395b96ca765ad5c982d68",
|
||||
|
@ -741,7 +749,10 @@
|
|||
"_journal/2024-08/2024-08-16.md": "096d9147a9e3e7a947558f8dec763a2c",
|
||||
"set/order.md": "373f4336d4845a3c2188d2215ac5fbc4",
|
||||
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c"
|
||||
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
||||
"_journal/2024-08-19.md": "e233a2225fdf95a161614e0bc22fce20",
|
||||
"_journal/2024-08/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||
"_journal/2024-08/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
title: "2024-08-19"
|
||||
---
|
||||
|
||||
- [ ] Anki Flashcards
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
|
|
|
@ -126,9 +126,9 @@ END%%
|
|||
|
||||
A **rooted tree** is a free tree in which one vertex is distinguished/blessed as the **root**. We call vertices of rooted trees **nodes**.
|
||||
|
||||
Let $T$ be a rooted tree with root $r$. Any node $y$ on the simple path from $r$ to node $x$ is an **ancestor** of $x$. Likewise, $x$ is a **descendant** of $y$. If the last edge on the path from $r$ to $x$ is $\{y, x\}$, $y$ is the **parent** of $x$ and $x$ is a **child** of $y$. Nodes with the same parent are called **siblings**.
|
||||
Let $T$ be a rooted tree with root $r$. Any node $y$ on the [[graphs#Paths|path]] from $r$ to node $x$ is an **ancestor** of $x$. Likewise, $x$ is a **descendant** of $y$. If the last edge on the path from $r$ to $x$ is $\{y, x\}$, $y$ is the **parent** of $x$ and $x$ is a **child** of $y$. Nodes with the same parent are called **siblings**.
|
||||
|
||||
A node with no children is an **external node** or **leaf**. A node with at least one child is an **internal node** or **nonleaf**. The number of children of a node is the **degree** of said node. The length of the simple path from the root to a node $x$ is the **depth** of $x$ in $T$. A **level** of a tree consists of all nodes at the same depth. The **height** of a node in a tree is the length of the longest simple path from the node to a leaf.
|
||||
A node with no children is an **external node** or **leaf**. A node with at least one child is an **internal node** or **nonleaf**. The number of children of a node is the **degree** of said node. The length of the path from the root to a node $x$ is the **depth** of $x$ in $T$. A **level** of a tree consists of all nodes at the same depth. The **height** of a node in a tree is the length of the longest path from the node to a leaf.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
|
@ -220,7 +220,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
What does it mean for node $y$ to be an ancestor of node $x$ in a rooted tree?
|
||||
Back: The simple path from the root to $x$ contains $y$.
|
||||
Back: The path from the root to $x$ contains $y$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1711136844980-->
|
||||
END%%
|
||||
|
@ -228,7 +228,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
What does it mean for node $y$ to be a descendent of node $x$ in a rooted tree?
|
||||
Back: The simple path from the root to $y$ contains $x$.
|
||||
Back: The path from the root to $y$ contains $x$.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1711136844983-->
|
||||
END%%
|
||||
|
@ -402,7 +402,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Let $T$ be a rooted tree. What does the depth of a node refer to?
|
||||
Back: The length of the simple path from the root to the node.
|
||||
Back: The length of the path from the root to the node.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1711136845107-->
|
||||
END%%
|
||||
|
@ -418,7 +418,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Let $T$ be a rooted tree. What does the height of a node refer to?
|
||||
Back: The length of the longest simple path from said node to a leaf.
|
||||
Back: The length of the longest path from said node to a leaf.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1711136845119-->
|
||||
END%%
|
||||
|
@ -466,7 +466,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Let $T$ be a rooted tree of height $h$. Which nodes have depth $h$?
|
||||
Back: The external nodes on the longest simple paths from the root to said nodes.
|
||||
Back: The external nodes on the longest paths from the root to said nodes.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1711136845150-->
|
||||
END%%
|
||||
|
|
|
@ -294,15 +294,6 @@ Tags: c17
|
|||
<!--ID: 1714677608754-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Dereferencing a pointer in C equates to what two operations in x86?
|
||||
Back: Copying the pointer into a register and then using the register in a memory reference.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1714677608758-->
|
||||
END%%
|
||||
|
||||
## PUSH and POP
|
||||
|
||||
| Instruction | Operands | Effect | Description |
|
||||
|
|
Loading…
Reference in New Issue