Algebra of sets and git flashcards.
parent
b4e6daa052
commit
8f161f4f52
|
@ -129,7 +129,11 @@
|
|||
"graph-subgraph.png",
|
||||
"graph-non-subgraph.png",
|
||||
"lcrs-nodes.png",
|
||||
"binary-tree-nodes.png"
|
||||
"binary-tree-nodes.png",
|
||||
"venn-diagram-union.png",
|
||||
"venn-diagram-intersection.png",
|
||||
"venn-diagram-rel-comp.png",
|
||||
"venn-diagram-abs-comp.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -258,7 +262,7 @@
|
|||
"_journal/2024-02/2024-02-27.md": "f75a0d04a875aeee932343dae0c78768",
|
||||
"filesystems/index.md": "cbd2b0290a3ba3b32abec4bd8bfefad5",
|
||||
"filesystems/cas.md": "d41c0d2e943adecbadd10a03fd1e4274",
|
||||
"git/objects.md": "8c1da67ac3f568624c3f9623eb2133e1",
|
||||
"git/objects.md": "4ad7a2ab275b5573055ea0433be1e4d7",
|
||||
"git/index.md": "ca842957bda479dfa1170ae85f2f37b8",
|
||||
"encoding/integer.md": "ab0db8d48734867d42279fb2f2362d25",
|
||||
"_journal/2024-02-29.md": "f610f3caed659c1de3eed5f226cab508",
|
||||
|
@ -309,7 +313,7 @@
|
|||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
"set/index.md": "83f21533067c58ada1222a1c53ebbe8a",
|
||||
"set/index.md": "67d869ecf287867199e197b3a7269c52",
|
||||
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||
|
@ -456,8 +460,9 @@
|
|||
"_journal/2024-05/2024-05-19.md": "fc14fc23d4ddca3628df7eec71a07e27",
|
||||
"_journal/2024-05-21.md": "7028d18a55f0a1f65dc0753af431ca42",
|
||||
"_journal/2024-05/2024-05-20.md": "d58a4ecd3bf9621cbe688f043be61239",
|
||||
"_journal/2024-05-22.md": "165219ce7638e30ade424f6c32bb17ff",
|
||||
"_journal/2024-05/2024-05-21.md": "f20e4dd94ea22fcb26049de128bc944e"
|
||||
"_journal/2024-05-22.md": "da0364a086746087236eb8afd5770ca3",
|
||||
"_journal/2024-05/2024-05-21.md": "f20e4dd94ea22fcb26049de128bc944e",
|
||||
"set/algebra.md": "a6877ceca952c417b52ea637716addbf"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -6,4 +6,8 @@ title: "2024-05-22"
|
|||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Read "Chapter 8. The Trouble with Distributed Systems" in "Designing Data-Intensive Applications".
|
||||
* Begin taking notes/creating flashcards on the [[algebra|algebra of sets]].
|
||||
* Additional flashcards on git branching.
|
|
@ -517,6 +517,30 @@ Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Soft
|
|||
<!--ID: 1709674569928-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many parents does an initial commit have?
|
||||
Back: Zero.
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1716397645567-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many parents does a "normal" commit have?
|
||||
Back: One.
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1716397645568-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many parents does a "merge" commit have?
|
||||
Back: Two or more.
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1716397645570-->
|
||||
END%%
|
||||
|
||||
## Tags
|
||||
|
||||
Tags are (possibly indirect) pointers to a git object. They *usually* point to a commit but aren't required to. There are two types of tags:
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
---
|
||||
title: Algebra of Sets
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algebra::set set
|
||||
tags:
|
||||
- algebra
|
||||
- set
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The study of the operations of union ($\cup$), intersection ($\cap$), and set difference ($-$), together with the inclusion relation ($\subseteq$), goes by the **algebra of sets**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What three operators make up the algebra of sets?
|
||||
Back: $\cup$, $\cap$, and $-$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060602-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What *relation* is relevant in the algebra of sets?
|
||||
Back: $\subseteq$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060605-->
|
||||
END%%
|
||||
|
||||
## Laws
|
||||
|
||||
The algebra of sets obey laws reminiscent (but not exactly) of the algebra of real numbers.
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\cup$} is to algebra of sets whereas {$+$} is to algebra of real numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060607-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\cap$} is to algebra of sets whereas {$\cdot$} is to algebra of real numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060609-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$-$} is to algebra of sets whereas {$-$} is to algebra of real numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060611-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\subseteq$} is to algebra of sets whereas {$\leq$} is to algebra of real numbers.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060614-->
|
||||
END%%
|
||||
|
||||
### Commutative Laws
|
||||
|
||||
For any sets $A$ and $B$, $$\begin{align*} A \cup B & = B \cup A \\ A \cap B & = B \cap A \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The commutative laws of the algebra of sets apply to what operators?
|
||||
Back: $\cup$ and $\cap$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060616-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the union commutative law state?
|
||||
Back: For any sets $A$ and $B$, $A \cup B = B \cup A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060618-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the intersection commutative law state?
|
||||
Back: For any sets $A$ and $B$, $A \cap B = B \cap A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060620-->
|
||||
END%%
|
||||
|
||||
### Associative Laws
|
||||
|
||||
For any sets $A$ and $B$, $$\begin{align*} A \cup (B \cup C) & = (A \cup B) \cup C \\ A \cap (B \cap C) & = (A \cap B) \cap C \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The associative laws of the algebra of sets apply to what operators?
|
||||
Back: $\cup$ and $\cap$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060622-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the union associative law state?
|
||||
Back: For any sets $A$, $B$, and $C$, $A \cup (B \cup C) = (A \cup B) \cup C$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060624-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the intersection associative law state?
|
||||
Back: For any sets $A$, $B$, and $C$, $A \cap (B \cap C) = (A \cap B) \cap C$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716396060625-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Binary file not shown.
After Width: | Height: | Size: 56 KiB |
Binary file not shown.
After Width: | Height: | Size: 59 KiB |
Binary file not shown.
After Width: | Height: | Size: 59 KiB |
Binary file not shown.
After Width: | Height: | Size: 58 KiB |
Binary file not shown.
After Width: | Height: | Size: 55 KiB |
|
@ -359,6 +359,15 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1715900348153-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set operation is shaded green in the following venn diagram?
|
||||
![[venn-diagram-union.png]]
|
||||
Back: $A \cup B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245855-->
|
||||
END%%
|
||||
|
||||
### General Form
|
||||
|
||||
For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists b \in B, x \in b)$$
|
||||
|
@ -435,6 +444,54 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716309007864-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is the absolute complement of set $A$?
|
||||
Back: A class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245860-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is the relative complement of set $B$ in $A$?
|
||||
Back: A set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245862-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:Classes} are to {2:absolute} complements whereas {2:sets} are to {1:relative} complements.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245866-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What contradiction arises when arguing the absolute complement of set $A$ is a set?
|
||||
Back: The union of the complement with $A$ is the *class* of all sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245868-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is the absolute complement of sets rarely useful in set theory?
|
||||
Back: The absolute complement of a set isn't a set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245870-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set operation is shaded green in the following venn diagram?
|
||||
![[venn-diagram-abs-comp.png]]
|
||||
Back: The absolute complement of $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716397645564-->
|
||||
END%%
|
||||
|
||||
## Power Set Axiom
|
||||
|
||||
For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
|
@ -656,6 +713,24 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716309007881-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set operation is shaded green in the following venn diagram?
|
||||
![[venn-diagram-intersection.png]]
|
||||
Back: $A \cap B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245873-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set operation is shaded green in the following venn diagram?
|
||||
![[venn-diagram-rel-comp.png]]
|
||||
Back: $A - B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716395245875-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
|
|
Loading…
Reference in New Issue