More beta-reduction notes and set theory definitions.
parent
6b13487ca4
commit
87ca0829b2
|
@ -533,10 +533,10 @@
|
||||||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||||
"set/functions.md": "9fc813971de5fdda7aaac0cf91a721ad",
|
"set/functions.md": "29fbc5fe127487649cd260aa9e290a3a",
|
||||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"lambda-calculus/beta-reduction.md": "5ea9b74d57074c699086db060fb86d50",
|
"lambda-calculus/beta-reduction.md": "e8b7fbca6c0395314ecbaf93a24e653b",
|
||||||
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
|
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
|
||||||
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
|
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
|
||||||
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
|
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
|
||||||
|
|
|
@ -10,3 +10,4 @@ title: "2024-06-22"
|
||||||
|
|
||||||
* Notes on [[beta-reduction#Normal Form|β-normal forms]].
|
* Notes on [[beta-reduction#Normal Form|β-normal forms]].
|
||||||
* Very basic notes on [[ars|abstract rewriting systems]].
|
* Very basic notes on [[ars|abstract rewriting systems]].
|
||||||
|
* Additional set theory definitions ([[functions#Restrictions|restrictions]] and [[functions#Images|images]]).
|
|
@ -260,12 +260,44 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How many contractions can make up a $\beta$-reduction?
|
How many contractions make up a $\beta$-reduction?
|
||||||
Back: Zero or more.
|
Back: Zero or more.
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
<!--ID: 1719065602215-->
|
<!--ID: 1719065602215-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $x(\lambda u. uv)$ in $\beta$-normal form?
|
||||||
|
Back: Yes.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1719103644322-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Is $(\lambda u. uv)x$ in $\beta$-normal form?
|
||||||
|
Back: No.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1719103644323-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Why isn't $x(\lambda u. uv)$ in $\beta$-normal form?
|
||||||
|
Back: N/A. It is.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1719103644324-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Why isn't $(\lambda u. uv)x$ in $\beta$-normal form?
|
||||||
|
Back: Because $(\lambda u. uv)x$ is a $\beta$-redex.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1719103644325-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
@ -440,7 +440,7 @@ END%%
|
||||||
|
|
||||||
## Inverses
|
## Inverses
|
||||||
|
|
||||||
Let $F$ be an arbitrary set. The **inverse** of $F$ is the set $$F^{-1} = \{\langle u, v \rangle \mid vFu\}.$$
|
Let $F$ be an arbitrary set. The **inverse** of $F$ is the set $$F^{-1} = \{\langle u, v \rangle \mid vFu\}$$
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What kind of mathematical object does the inverse operation apply to?
|
What kind of mathematical object does the inverse operation apply to?
|
||||||
|
@ -617,6 +617,22 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1719017560113-->
|
<!--ID: 1719017560113-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is set $\{\langle u, v \rangle \mid vAu\}$ more simply denoted?
|
||||||
|
Back: $A^{-1}$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644290-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does $\varnothing^{-1}$ evalute to?
|
||||||
|
Back: $\varnothing$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644293-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Compositions
|
## Compositions
|
||||||
|
|
||||||
Let $F$ and $G$ be arbitrary sets. The **composition** of $F$ and $G$ is the set $$F \circ G = \{\langle u, v \rangle \mid \exists t, uGt \land tFv \}$$
|
Let $F$ and $G$ be arbitrary sets. The **composition** of $F$ and $G$ is the set $$F \circ G = \{\langle u, v \rangle \mid \exists t, uGt \land tFv \}$$
|
||||||
|
@ -676,6 +692,243 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1719017560123-->
|
<!--ID: 1719017560123-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is set $\{\langle u, v \rangle \mid \exists t, uBt \land tAv \}$ more simply denoted?
|
||||||
|
Back: $A \circ B$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644294-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F$ be an arbitrary set. What is $F \circ \varnothing$?
|
||||||
|
Back: $\varnothing$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644295-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F$ be an arbitrary set. What is $\varnothing \circ F$?
|
||||||
|
Back: $\varnothing$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644296-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Restrictions
|
||||||
|
|
||||||
|
Let $F$ and $A$ be arbitrary sets. The **restriction of $F$ to $A$** is the set $$F \restriction A = \{\langle u, v \rangle \mid uFv \land u \in A\}$$
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical object does the restriction operation apply to?
|
||||||
|
Back: Sets.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644297-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
$F \restriction A$ is the restriction of $F$ {to} $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644298-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical object does the restriction operation emit?
|
||||||
|
Back: Relations.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644299-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the "arity" of the restriction operation in set theory?
|
||||||
|
Back: $2$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644300-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is the restriction of $F$ to $A$ denoted?
|
||||||
|
Back: $F \restriction A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644301-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is the restriction of $F$ to $A$ defined?
|
||||||
|
Back: $F \restriction A = \{\langle u, v \rangle \mid uFv \land u \in A\}$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644302-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider function $F \colon A \rightarrow B$. How does $\mathop{\text{dom}}F$ relate to $\mathop{\text{dom}}(F \restriction A)$?
|
||||||
|
Back: They are equal.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644303-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider function $F \colon A \rightarrow B$. How does $\mathop{\text{ran}}F$ relate to $\mathop{\text{ran}}(F \restriction A)$?
|
||||||
|
Back: They are equal.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644304-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider function $F \colon A \rightarrow B$ and set $C \subseteq A$. How does $\mathop{\text{dom}}F$ relate to $\mathop{\text{dom}}(F \restriction C)$?
|
||||||
|
Back: $\mathop{\text{dom}}(F \restriction C) \subseteq \mathop{\text{dom}}F$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644305-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is $F \restriction A$ pronounced?
|
||||||
|
Back: The restriction of $F$ to $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644306-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider function $F \colon A \rightarrow B$ and set $C \subseteq A$. How does $\mathop{\text{ran}}F$ relate to $\mathop{\text{ran}}(F \restriction C)$?
|
||||||
|
Back: $\mathop{\text{ran}}(F \restriction C) \subseteq \mathop{\text{ran}}F$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644307-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is set $\{\langle u, v \rangle \mid uAv \land u \in B\}$ more simply denoted?
|
||||||
|
Back: $A \restriction B$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644308-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F$ be an arbitrary set. What is $F \restriction \varnothing$?
|
||||||
|
Back: $\varnothing$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644309-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Images
|
||||||
|
|
||||||
|
Let $F$ and $A$ be sets. Then the **image of $F$ under $A$** is $$F[\![A]\!] = \{v \mid \exists u \in A, uFv\}$$
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical object does the image operation apply to?
|
||||||
|
Back: Sets.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644310-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical object does the image operation emit?
|
||||||
|
Back: Sets.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644311-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
$F[\![A]\!]$ is the image of $F$ {under} $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644312-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the "arity" of the image operation in set theory?
|
||||||
|
Back: $2$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644313-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is the image of $F$ under $A$ denoted?
|
||||||
|
Back: $F[\![A]\!]$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644314-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is the image of $F$ under $A$ defined?
|
||||||
|
Back: $F[\![A]\!] = \{v \mid \exists u \in A, uFv\}$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644315-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is the image of $F$ under $A$ defined in terms of restrictions?
|
||||||
|
Back: $F[\![A]\!] = \mathop{\text{ran}}(F \restriction A)$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644316-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is set $\{v \mid \exists u \in B, uAv\}$ more simply denoted?
|
||||||
|
Back: $A[\![B]\!]$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644317-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Enderton says "multiple-valued functions" are actually what?
|
||||||
|
Back: Relations.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644318-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Enderton says "multiple-valued functions" are actually what?
|
||||||
|
Back: Relations.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Enderton says "$F^{-1}(9) = \pm 3$" is preferably written in what way?
|
||||||
|
Back: $F^{-1}[\![\{9\}]\!] = \{-3, 3\}$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644319-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is $F^{-1}[\![A]\!]$ defined using set-builder notation?
|
||||||
|
Back: $F^{-1}[\![A]\!] = \{x \in \mathop{\text{dom}} F \mid F(x) \in A \}$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644320-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $F$ be an arbitrary set. What is $F[\![\varnothing]\!]$?
|
||||||
|
Back: $\varnothing$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1719103644321-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163).
|
* “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163).
|
||||||
|
|
Loading…
Reference in New Issue