Polynomials and delta-constants.
parent
5f51ad65f1
commit
7871ae52fe
|
@ -210,7 +210,7 @@
|
|||
"_journal/2024-02-19.md": "30d16c5373deb9cb128d2e7934ae256a",
|
||||
"_journal/2024-02/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
||||
"combinatorics/permutations.md": "1b994b48798699655ee64df29c640251",
|
||||
"combinatorics/combinations.md": "b83f325caa1a7a97a3873016d6ccefcc",
|
||||
"combinatorics/combinations.md": "1109af89c5f3343ef978e4385c4b3819",
|
||||
"_journal/2024-02-20.md": "b85ba0eeeb16e30a602ccefabcc9763e",
|
||||
"_journal/2024-02/2024-02-19.md": "df1a9ab7ab89244021b3003c84640c78",
|
||||
"combinatorics/inclusion-exclusion.md": "c27b49ee03cc5ee854d0e8bd12a1d505",
|
||||
|
@ -249,7 +249,7 @@
|
|||
"algebra/sequences/index.md": "91ec81d3aa22d1baef2ab4b24736c43c",
|
||||
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
|
||||
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
|
||||
"algebra/sequences/triangular-numbers.md": "e833b69d767fb33594716cb0b2bd6aa3",
|
||||
"algebra/sequences/triangular-numbers.md": "39a84ee317d3760a2eda7279c83e921a",
|
||||
"algebra/sequences/square-numbers.md": "171f7c5a8dac088afba40923ab86c68e",
|
||||
"_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670",
|
||||
"_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2",
|
||||
|
@ -258,7 +258,7 @@
|
|||
"_journal/2024-03-05.md": "e9a911c19bb4c0ff451db793248cb4bb",
|
||||
"_journal/2024-03/2024-03-04.md": "4948d90a08af2cff58c629c9a2e11ee4",
|
||||
"algebra/sequences/geometric.md": "57544cab59f0b8c28d4a11f0273a3119",
|
||||
"algebra/sequences/arithmetic.md": "0e8d8168f04550cb506a218b298c1c7f",
|
||||
"algebra/sequences/arithmetic.md": "6acb04ca2bbd2e39decd23a6451f2266",
|
||||
"_journal/2024-03-06.md": "ac7a3d764934f49b2be7aa76e402d853",
|
||||
"_journal/2024-03/2024-03-05.md": "94b28d0b9bc62cc0bd99d315fb7c6d30",
|
||||
"_journal/2024-03-07.md": "7bf68d6d81e89aa00f5ddd7510b69e3e",
|
||||
|
@ -347,7 +347,13 @@
|
|||
"_journal/2024-04-15.md": "c08bd7258def0c2a6b78039bb4aa03b9",
|
||||
"_journal/2024-04/2024-04-14.md": "037c77d0e11f2d58ffee61ea0a1708ab",
|
||||
"_journal/2024-04-16.md": "0bf6e2f2a3afab73d528cee88c4c1a92",
|
||||
"_journal/2024-04/2024-04-15.md": "256253b0633d878ca58060162beb7587"
|
||||
"_journal/2024-04/2024-04-15.md": "256253b0633d878ca58060162beb7587",
|
||||
"algebra/polynomials.md": "6e20029b44fe0d0c4f35ef8ee4874d82",
|
||||
"algebra/sequences/delta-constant.md": "f51bb01d5475004063e444e2acbcd0a3",
|
||||
"_journal/2024-04-19.md": "a293087860a7f378507a96df0b09dd2b",
|
||||
"_journal/2024-04/2024-04-18.md": "f6e5bee68dbef90a21ca92a846930a88",
|
||||
"_journal/2024-04/2024-04-17.md": "331423470ea83fc990c1ee1d5bd3b3f1",
|
||||
"_journal/2024-04/2024-04-16.md": "2f47dcbc01dd0995e59ae1759122b416"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -1,11 +0,0 @@
|
|||
---
|
||||
title: "2024-04-18"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [ ] Interview Prep (1 Practice Problem)
|
||||
- [ ] Log Work Hours (Max 3 hours)
|
|
@ -0,0 +1,15 @@
|
|||
---
|
||||
title: "2024-04-19"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [x] Interview Prep (1 Practice Problem)
|
||||
- [x] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Hide-and-seek application
|
||||
* Revisions to settings. Primarily flattening the structure.
|
||||
* Read 2.3 "Polynomial Fitting" of "Discrete Mathematics: An Open Introduction".
|
|
@ -0,0 +1,15 @@
|
|||
---
|
||||
title: "2024-04-18"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
- [x] Interview Prep (1 Practice Problem)
|
||||
- [x] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Discussed first chapter of "Grokking the System Design Interview" as well as chapter 6 of "Designing Data-Intensive Applications" with Mike.
|
||||
* Applied to several more job openings.
|
||||
* Revised presence tracking and host updates in hide-and-seek application.
|
|
@ -0,0 +1,130 @@
|
|||
---
|
||||
title: Polynomials
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algebra::polynomial
|
||||
tags:
|
||||
- algebra
|
||||
- polynomial
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Given nonnegative integer $d$, a **polynomial in $n$ of degree $d$** is a function $p(n)$ of the form $$p(n) = \sum_{i=0}^d a_i n^i$$
|
||||
The coefficients of $p(n)$ are $a_0, a_1, \ldots, a_d$. Furthermore, $a_d \neq 0$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Using sigma notation, a polynomial in $n$ of degree $d$ is a function of what form?
|
||||
Back: $p(n) = \sum_{i=0}^d a_in^i$ where $a_d \neq 0$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713580808758-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What four algebraic operations are permitted in a polynomial?
|
||||
Back: Addition, subtraction, multiplication, and exponentiation.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713580808763-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is $d$ in "a polynomial in $n$ of degree $d$"?
|
||||
Back: $d$ is a nonnegative integer.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713580808766-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is $n$ in "a polynomial in $n$ of degree $d$"?
|
||||
Back: The polynomial's indeterminate.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713580808769-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which coefficient is special in a polynomial and why?
|
||||
Back: That attached to the monomial with highest degree because it cannot be zero.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713580808772-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the coefficients of a polynomial?
|
||||
Back: The constants of the monomials found in the polynomial.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1713580808776-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to a degree-0 polynomial?
|
||||
Back: A constant.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1708974221749-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to a degree-1 polynomial?
|
||||
Back: A monomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708974221752-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to a degree-2 polynomial?
|
||||
Back: A binomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708974221755-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a binomial?
|
||||
Back: A polynomial containing two terms.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708368078759-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is polynomial fitting?
|
||||
Back: The solving of a linear system to find the coefficients of a polynomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109018-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Polynomial fitting is a strategy for discovering what part of a polynomial?
|
||||
Back: The coefficients.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580808780-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the degree of a polynomial?
|
||||
Back: The highest degree of the monomials with non-zero coefficients.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109082-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many data points are required to fit a polynomial?
|
||||
Back: $k + 1$ where $k$ is the degree of the polynomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109089-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
@ -150,6 +150,14 @@ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n
|
|||
<!--ID: 1709666305449-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is a sequence of partial sums named the way it is?
|
||||
Back: Each term is found by adding a finite number of infinite terms.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109297-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|
@ -0,0 +1,201 @@
|
|||
---
|
||||
title: ∆ᵏ-constant Sequence
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algebra::sequence algebra::polynomial
|
||||
tags:
|
||||
- algebra
|
||||
- sequence
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Let $(a_n)$ be a sequence. We define the **$k$th differences of $(a_n)$** recursively:
|
||||
|
||||
* The $0$th differences of $(a_n)$ is $(a_n)$.
|
||||
* The $k$th differences of $(a_n)$ is the sequence given by subtracting consecutive terms of the $(k-1)st$ differences of $(a_n)$.
|
||||
|
||||
A sequence is said to be **$\Delta^k$-constant** if the $k$th differences are constant.
|
||||
|
||||
> The closed formula for a sequence will be a degree $k$ polynomial if and only if the sequence is $\Delta^k$-constant.
|
||||
|
||||
This is the discrete analogue to (continuous) derivatives of polynomials.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the $0$th differences of $(a_n)_{n \geq 0}$?
|
||||
Back: $(a_n)_{n \geq 0}$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109096-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the $1$st differences of $(a_n)_{n \geq 0}$?
|
||||
Back: $(b_n)_{n \geq 1}$ where $b_n = a_n - a_{n - 1}$.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109118-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How do we refer to the $1$st differences of $(a_n)$ more naturally?
|
||||
Back: As "the differences of $(a_n)$."
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109125-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the base case of the recursive definition of the $k$th differences of $(a_n)$?
|
||||
Back: $k = 0$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109133-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the recurrence of the recursive definition of the $(k + 1)$st differences of $(a_n)$?
|
||||
Back: The $(k + 1)$st differences is the differences of the $k$th differences.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109153-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for $(a_n)$ to be $\Delta^k$-constant?
|
||||
Back: The $k$th differences of $(a_n)$ is constant.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109175-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What can be said about the closed formula of a $\Delta^k$-constant sequence?
|
||||
Back: It is a polynomial with degree $k$.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109182-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
We say a sequence is {$\Delta^k$-constant} when the {$k$th differences is constant}.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109189-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
$\Delta^k$-constant sequences are a discrete analogue to what calculus concept?
|
||||
Back: Derivatives.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
Tags: calculus
|
||||
<!--ID: 1713580109197-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical expression do $\Delta^k$-constant sequences relate to?
|
||||
Back: Polynomials.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
Tags: calculus
|
||||
<!--ID: 1713580109203-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How can we prove every quadratic sequence, say $(a_n)$, has arithmetic differences?
|
||||
Back: By showing $a_{n+1} - a_n$ is linear.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109225-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How can we prove every cubic sequence, say $(a_n)$, has quadratic differences?
|
||||
Back: By showing $a_{n+1} - a_n$ is quadratic.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109232-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The closed formula for a sequence will be a {degree $k$ polynomial} if and only if the $k$th differences {is constant}.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109237-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How are arithmetic sequences defined in terms of $\Delta^k$ polynomials?
|
||||
Back: A sequence is arithmetic if and only if it is $\Delta^1$-constant.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109244-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How are geometric sequences defined in terms of $\Delta^k$ polynomials?
|
||||
Back: N/A
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109250-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* can't a geometric sequence be $\Delta^k$-constant for some $k \geq 0$?
|
||||
Back: Because the closed formula of a geometric sequence is not a polynomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109255-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $(a_n)$ is a $\Delta^2$-constant sequence. What general form describes its closed formula?
|
||||
Back: $an^2 + bn + c$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109261-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $(a_n)$ is a $\Delta^3$-constant sequence. What general form describes its closed formula?
|
||||
Back: $an^3 + bn^2 + cn + d$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109265-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $(a_n)$ is a $\Delta^k$-constant sequence. Where is $k$ repeated in $(a_n)$'s closed formula?
|
||||
Back: At the largest degree of the polynomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109270-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the terms in a $\Delta^0$-constant sequences?
|
||||
Back: $c, c, c, \ldots$ for some constant $c$.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109274-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How do $\Delta^k$-constant sequences relate to polynomial fitting?
|
||||
Back: The closed formula of a $\Delta^k$-constant sequence is a polynomial we can fit.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109280-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many data points of a $\Delta^k$-constant sequence are needed to polynomial fit its closed formula?
|
||||
Back: $k + 1$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109285-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|
@ -254,6 +254,14 @@ Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://e
|
|||
<!--ID: 1709419325981-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The triangular numbers is the sequence of partial sums of what sequence?
|
||||
Back: $a_n = n$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1713580109292-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
|
|
|
@ -525,46 +525,6 @@ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n
|
|||
<!--ID: 1708368078753-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a degree-0 polynomial?
|
||||
Back: A constant.
|
||||
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
|
||||
<!--ID: 1708974221746-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to a degree-0 polynomial?
|
||||
Back: A constant.
|
||||
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
|
||||
<!--ID: 1708974221749-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to a degree-1 polynomial?
|
||||
Back: A monomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708974221752-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to a degree-2 polynomial?
|
||||
Back: A binomial.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708974221755-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a binomial?
|
||||
Back: A polynomial containing two terms.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708368078759-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why are binomial coefficients named the way they are?
|
||||
|
|
Loading…
Reference in New Issue