Finite automata and consolidate bash/POSIX.
parent
e82c40f662
commit
737ed9e300
|
@ -237,7 +237,10 @@
|
|||
"abs-down.png",
|
||||
"abs-right-down.png",
|
||||
"abs-left-down.png",
|
||||
"triple-table-repr.png"
|
||||
"triple-table-repr.png",
|
||||
"state-diagram.png",
|
||||
"state-diagram-ends1.png",
|
||||
"state-diagram-ends0.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -578,7 +581,7 @@
|
|||
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
|
||||
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
|
||||
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
||||
"algebra/set.md": "6cf503bd1118d22a45f1571057bea96d",
|
||||
"algebra/set.md": "ae08c25c07ecedb2a05c02b258b4542a",
|
||||
"algebra/boolean.md": "c9bd5abb601be6d2bedd24d5f54848b0",
|
||||
"git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb",
|
||||
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
|
||||
|
@ -976,7 +979,7 @@
|
|||
"_journal/2024-11/2024-11-24.md": "894b021e6335d4e6947448c8d362c083",
|
||||
"_journal/2024-11-26.md": "29bc0b54d23034b9108e567a1d5fa8ac",
|
||||
"_journal/2024-11/2024-11-25.md": "1ec17a8473fa9c4779090ecbd22d70ef",
|
||||
"calculus/intervals.md": "6a317fb5053b172611e9e7ae6f66f609",
|
||||
"calculus/intervals.md": "7da1830e226834566eab2c5bd2cae466",
|
||||
"c17/storage.md": "07f0aa969d502df97f757318bde3c166",
|
||||
"c17/functions.md": "76b12732875998c44b22ba3531cf88a0",
|
||||
"_journal/2024-11-27.md": "5a58e3a0bd08c689d30600021937495d",
|
||||
|
@ -999,7 +1002,7 @@
|
|||
"_journal/2024-12/2024-12-04.md": "965f6619edf1002d960203e3e12a413b",
|
||||
"_journal/2024-12-06.md": "d75323d0fec57f4fc1f13cb4370df18d",
|
||||
"_journal/2024-12/2024-12-05.md": "4f3b1e7a43e01cc97b0eed6fbc6c1f96",
|
||||
"calculus/integrals.md": "e8d36a8fae9cd785374f419996ef5269",
|
||||
"calculus/integrals.md": "edc4e00d8e2b9a7cd14836bb543bb8b6",
|
||||
"_journal/2024-12-07.md": "bfb6c4db0acbacba19f03a04ec29fa5c",
|
||||
"_journal/2024-12/2024-12-06.md": "d73b611d2d15827186a0252d9b9a6580",
|
||||
"_journal/2024-12-08.md": "5662897539b222db1af45dcd217f0796",
|
||||
|
@ -1015,7 +1018,7 @@
|
|||
"_journal/2024-12-11.md": "e7393c01b44c5b804f86f45b8b899b59",
|
||||
"_journal/2024-12/2024-12-10.md": "d4f43b32220dbe174be514397b1bb035",
|
||||
"_journal/2024-12/2024-12-11.md": "e7393c01b44c5b804f86f45b8b899b59",
|
||||
"encoding/uri.md": "394abe477b882e1414dd2fb151fea823",
|
||||
"encoding/uri.md": "09552882689f55414786d709c43f6697",
|
||||
"encoding/xml.md": "01a66b1a102cccc682f8f1cab0f50bc6",
|
||||
"encoding/rdf.md": "87a47be25bc5754a11166a4b7663cada",
|
||||
"_journal/2024-12-15.md": "be66c8808d8bb66d4e7b91db7c93c94a",
|
||||
|
@ -1042,7 +1045,19 @@
|
|||
"encoding/xml/rdf.md": "f4491dd28b937da3182d701a863e40fe",
|
||||
"encoding/xml/index.md": "01a66b1a102cccc682f8f1cab0f50bc6",
|
||||
"ontology/reification.md": "ef8275957dcc1a7e5501722d4652e41c",
|
||||
"ontology/rdf.md": "fd273c30bec6f46b68547f0d392620b1"
|
||||
"ontology/rdf.md": "fd273c30bec6f46b68547f0d392620b1",
|
||||
"data-models/rdf.md": "a07c290d11087346757185b8047c94c7",
|
||||
"serialization/xml.md": "84b632282ebcc2b6216923a02abdd4c2",
|
||||
"serialization/index.md": "5ed7e99e4efc4844839ea357d351f5d8",
|
||||
"data-models/index.md": "9e60f40798490f0743f291e55f492033",
|
||||
"_journal/2024-12-22.md": "015dbf675853a81db07d641e8dab7fd4",
|
||||
"_journal/2024-12/2024-12-21.md": "1c1a5791f7519c92e882957cf417b51f",
|
||||
"formal-system/language.md": "7797d33a0b0eb187d43dda46a138fb25",
|
||||
"computability/automaton.md": "e01a115d4df90f565c51435e3f558d1e",
|
||||
"computability/index.md": "92042eac186e5772144f86141fbac155",
|
||||
"_journal/2024-12-23.md": "0a7cf306d477020e020ed23ce3c2d68d",
|
||||
"_journal/2024-12/2024-12-22.md": "75375a867efc5b3aff406c73394d4814",
|
||||
"computability/language.md": "9ee8bd16c231e71855ab1d8dae3188cb"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -1,9 +0,0 @@
|
|||
---
|
||||
title: "2024-12-21"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-12-23"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Added [[automaton|finite automata]] definition and related introductory notes.
|
|
@ -0,0 +1,12 @@
|
|||
---
|
||||
title: "2024-12-21"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on properties of [[integrals#Step Functions|step function integrals]].
|
||||
* Additional notes on [[cardinality|cardinal numbers]].
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-12-22"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on [[language]] (e.g. strings, alphabets, etc.).
|
|
@ -366,7 +366,7 @@ For any sets $A$, $B$, and $C$, $$\begin{align*} A \cap (B \cup C) & = (A \cap B
|
|||
%%ANKI
|
||||
Basic
|
||||
The distributive laws of the algebra of sets apply to what operators?
|
||||
Back: $\cup$ and $\cap$
|
||||
Back: $\cup$ and $\cap$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270441-->
|
||||
END%%
|
||||
|
|
|
@ -1,43 +0,0 @@
|
|||
---
|
||||
title: Bash
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: bash
|
||||
tags:
|
||||
- bash
|
||||
---
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How do you escape a `'` within a single-quote string?
|
||||
Back: This is impossible.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816752230-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the null string refer to?
|
||||
Back: The empty string, i.e. `""`.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816752237-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When does Bash remove null strings from a command?
|
||||
Back: When they occur as part of a non-null command-line argument.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816752241-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why does the following not work correctly?
|
||||
```bash
|
||||
$ # -F specifies the field separator
|
||||
$ awk -F"" 'program' files
|
||||
```
|
||||
Back: Bash removes the null string before executing the command.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816764555-->
|
||||
END%%
|
|
@ -1,61 +0,0 @@
|
|||
---
|
||||
title: Prompts
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: bash
|
||||
tags:
|
||||
- bash
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
According to Robbins a POSIX-compliant shell (like Bash) generally has the primary and secondary prompts denoted with `$` and `>` respectively. Adjust these values using environment variables `$PS1` and `PS2` respectively.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What symbol is usually used to denote the primary prompt?
|
||||
Back: `$$`
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706882670149-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What environment variable controls Bash's primary prompt?
|
||||
Back: `$$PS1`
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706973587222-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What symbol is usually used to denote the secondary prompt?
|
||||
Back: `>`
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706882670158-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What environment variable controls Bash's secondary prompt?
|
||||
Back: `$$PS2`
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706973587232-->
|
||||
END%%
|
||||
|
||||
Paths supplied to commands are typically "sanitized" by prefixing the path name with `./`. This is mentioned in a few different places:
|
||||
|
||||
* `find -execdir` performs this prefixing automatically on all found files.
|
||||
* `awk` ambiguously interprets a file named e.g. `count=1` as variable assignment. Should write `$ awk -f program.awk ./count=1`.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What methodology is commonly used to "sanitize" paths supplied as command-line arguments?
|
||||
Back: Prefixing the paths with `./`.
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706885111460-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
* Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
|
@ -1,69 +0,0 @@
|
|||
---
|
||||
title: Measuring Command Robustness
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: bash
|
||||
tags:
|
||||
- bash
|
||||
- shell
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
An interesting point Robbins discusses in his introduction to [[posix/awk/index|gawk]] is this idea of command robustness. He states that:
|
||||
|
||||
> A self-contained shell script is more reliable because there are no other files to misplace.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a self-contained shell script?
|
||||
Back: A shell script that does not rely on the presence of other files.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911473-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What makes a self-contained shell script more reliable?
|
||||
Back: There are no other files to misplace.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911475-->
|
||||
END%%
|
||||
|
||||
He argues that the first command below is more robust than the second since the command is more loosely coupled to its environment:
|
||||
|
||||
```bash
|
||||
$ awk 'program' input-file1 input-file2 ...
|
||||
$ awk -f program-file input-file1 input-file2 ...
|
||||
```
|
||||
|
||||
It's interesting to think what else can be used as a measure of a command's robustness:
|
||||
|
||||
* Required environment variables or environment variables formatted in a certain way
|
||||
* `$PATH` needs to point to a specific location
|
||||
* Whether the invoked program is present by default in a distribution or must be installed
|
||||
* The ability to run with or without an associated TTY
|
||||
* The ability to run with or without associated standard streams
|
||||
* `stdout`, `stderr`, `stdin`
|
||||
* How backwards compatible the invoked program is
|
||||
* Version mismatch may silently cause the same invocation to fail
|
||||
* Expected permissions
|
||||
* EUID, read permissions on an input file, etc.
|
||||
* Determinism of the program itself
|
||||
* Does output rely entirely on input or can it make nondeterministic choices
|
||||
* The amount of resources dedicated to the program
|
||||
* Failure may occur if not enough memory is provided to the command
|
||||
* Whether a program acts idempotently
|
||||
* What happens if I run the command twice in a row?
|
||||
* Whether a program acts atomically
|
||||
* Is it possible intermediate files are left that affect subsequent runs?
|
||||
* The presence of timeouts
|
||||
* Perhaps a program waits a specified amount of time before input is available. The command's success is now externally determined.
|
||||
* Locale-aware functionality
|
||||
* Consider for instance [[posix/awk/index|gawk]]'s `\u` [[escape-sequences|sequence]] which targets characters in the current locale's character set as opposed to specifically Unicode.
|
||||
* POSIX standard [[posix/regexp#Character Classes|character classes]] serve as another example.
|
||||
|
||||
The above scenarios are what makes something like [[nix/index|nix]] so compelling.
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
|
@ -1,58 +0,0 @@
|
|||
---
|
||||
title: Shebang
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: bash
|
||||
tags:
|
||||
- bash
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The shebang (also writting shabang or sha-bang) is a magic character at the start of a script indicating what command should be run when invoking the script directly. It always begins with ASCII characters `#!`.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What ASCII characters do shebangs start with?
|
||||
Back: `#!`
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706726911458-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What class of programs can be specified in a shebang?
|
||||
Back: Interpreters
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911461-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The OS will parse a shebang into what three parts?
|
||||
Back: `#!`, the interpreter, and the rest of the line as a single argument.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911464-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What gotcha does Robbins highlight with shebang parsing?
|
||||
Back: The remainder of the line following the interpreter is passed as a *single* argument.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911467-->
|
||||
END%%
|
||||
|
||||
Some systems limit the length of interpreters to just 32 characters. A simple workaround when encountering this limitation is to introduce a symbolic link.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What workaround is used when shebang interpreter names are too long?
|
||||
Back: Introduce a symbolic link.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911470-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
* Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
|
@ -1,18 +1,26 @@
|
|||
---
|
||||
title: Integrals
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: calculus::integrals
|
||||
FILE TAGS: calculus::integral
|
||||
tags:
|
||||
- calculus
|
||||
- integral
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The integral is usually defined first in terms of step functions and then general ordinate sets. It is closely tied to [[area]]. In particular, the integral of some nonnegative function on a closed interval is defined so that its area is equal to the area of the ordinate set in question.
|
||||
|
||||
## Step Functions
|
||||
|
||||
Let $s$ be a step function defined on [[intervals|interval]] $[a, b]$, and let $P = \{x_0, x_1, \ldots, x_n\}$ be a [[intervals#Partitions|partition]] of $[a, b]$ such that $s$ is constant on the open subintervals of $P$. Denote by $s_k$ the constant value that $s$ takes in the $k$th open subinterval, so that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k, \quad k = 1, 2, \ldots, n.$$
|
||||
|
||||
The **integral of $s$ from $a$ to $b$**, denoted by the symbol $\int_a^b s(x)\,dx$, is defined by the following formula: $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$
|
||||
|
||||
Furthermore, $$\int_a^b s(x) \,dx = -\int_b^a s(x) \,dx$$
|
||||
|
||||
and $$\int_a^a s(x)\,dx = 0.$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Apostol first introduces the integral for the ordinate sets of what kind of function?
|
||||
|
@ -132,6 +140,183 @@ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Int
|
|||
<!--ID: 1733520215132-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. How is $\int_b^a s(x) \,dx$ defined?
|
||||
Back: As $-\int_a^b s(x) \,dx$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734816555507-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. How is $\int_a^b s(x) \,dx$ defined?
|
||||
Back: Given partition $P = \{x_0, x_1, \ldots, x_n\}$ with constant value $s_k$ on the $k$th open subinterval, $$\int_a^b s(x) \,dx = \sum_{k=1}^n s_k \cdot (x_k - x_{k - 1})$$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734816555512-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. What does $\int_a^b s(x) \,dx$ evaluate to after swapping limits of integration?
|
||||
Back: As $-\int_b^a s(x) \,dx$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734816555515-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. What does $\int_a^a s(x) \,dx$ evaluate to?
|
||||
Back: $0$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734816555518-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. What name is given to $a$ in $\int_a^b s(x) \,dx$?
|
||||
Back: The lower limit of integration.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734816555521-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. What name is given to $b$ in $\int_a^b s(x) \,dx$?
|
||||
Back: The upper limit of integration.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734816555523-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. What name is given to $a$ and $b$ in $\int_a^b s(x) \,dx$?
|
||||
Back: The limits of integration.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734816555526-->
|
||||
END%%
|
||||
|
||||
### Additivity
|
||||
|
||||
Let $s$ and $t$ be step functions defined on $[a, b]$. Then $$\int_a^b s(x) + t(x) \,dx = \int_a^b s(x) \,dx + \int_a^b t(x) \,dx$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ and $t$ be step functions over $[a, b]$. What does the additive property state?
|
||||
Back: $\int_a^b s(x) + t(x) \,dx = \int_a^b s(x) \,dx + \int_a^b t(x) \,dx$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463659-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ and $t$ be step functions over $[a, b]$. What is the following identity called? $$\int_a^b s(x) + t(x) \,dx = \int_a^b s(x) \,dx + \int_a^b t(x) \,dx$$
|
||||
|
||||
Back: The additive property.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463668-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ and $t$ be step functions over $[a, b]$. How is the following more compactly written? $$\int_a^b s(x) \,dx + \int_a^b t(x) \,dx$$
|
||||
Back: $\int_a^b s(x) + t(x) \,dx$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463673-->
|
||||
END%%
|
||||
|
||||
### Homogeneousness
|
||||
|
||||
Let $s$ be a step function defined on $[a, b]$. Let $c \in \mathbb{R}$. Then $$\int_a^b c \cdot s(x) \,dx = c\int_a^b s(x) \,dx$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function over $[a, b]$. What does the homogeneous property state?
|
||||
Back: For all $c \in \mathbb{R}$, $\int_a^b c \cdot s(x) \,dx = c \int_a^b s(x) \,dx$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463679-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ be a step function defined over $[a, b]$ and $c \in \mathbb{R}$. What is the following identity called? $$\int_a^b c \cdot s(x) \,dx = c\int_a^b s(x) \,dx$$
|
||||
|
||||
Back: The homogeneous property.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463685-->
|
||||
END%%
|
||||
|
||||
### Linearity
|
||||
|
||||
Let $s$ and $t$ be step functions defined on $[a, b]$. Let $c_1, c_2 \in \mathbb{R}$. Then $$\int_a^b [c_1s(x) + c_2t(x)] \,dx = c_1 \int_a^b s(x) \,dx + c_2 \int_a^b t(x) \,dx$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ and $t$ be step functions over $[a, b]$ and $c_1, c_2 \in \mathbb{R}$. What does the linearity property state?
|
||||
Back: $\int_a^b [c_1 s(x) + c_2 t(x)] \,dx = c_1 \int_a^b s(x) \,dx + c_2 \int_a^b t(x) \,dx$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463699-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ and $t$ be step functions over $[a, b]$ and $c_1, c_2 \in \mathbb{R}$. What is the following identity called? $$\int_a^b [c_1s(x) + c_2t(x)] \,dx = c_1 \int_a^b s(x) \,dx + c_2 \int_a^b t(x) \,dx$$
|
||||
Back: The linearity property.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463704-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The linearity property is immediately derived from what other two properties?
|
||||
Back: The additive and homogeneous properties.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463710-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {linearity} property is a combination of the {additive} and {homogenous} properties.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463693-->
|
||||
END%%
|
||||
|
||||
### Comparison Theorem
|
||||
|
||||
Let $s$ and $t$ be step functions defined on $[a, b]$. Suppose $s(x) < t(x)$ for all $x \in [a, b]$. Then $$\int_a^b s(x) \,dx < \int_a^b t(x) \,dx$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ and $t$ be step functions over $[a, b]$. What does the comparison theorem state?
|
||||
Back: If $s(x) < t(x)$ for all $x \in [a, b]$, $\int_a^b s(x) \,dx < \int_a^b t(x) \,dx$.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734815755275-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $s$ and $t$ be step functions over $[a, b]$ such that $s(x) < t(x)$ for all $x \in [a, b]$. What is the following called? $$\int_a^b s(x) \,dx < \int_a^b t(x) \,dx$$
|
||||
Back: The comparison theorem.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734815755282-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The comparison theorem of step function integrals corresponds to what property of area?
|
||||
Back: The monotone property of area.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734815755285-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The monotone property of area corresponds to what theorem of step function integrals?
|
||||
Back: The comparison theorem.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734815755288-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
|
@ -1,7 +1,7 @@
|
|||
---
|
||||
title: Intervals
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: calculus::intervals
|
||||
FILE TAGS: calculus::interval
|
||||
tags:
|
||||
- calculus
|
||||
---
|
||||
|
|
|
@ -0,0 +1,501 @@
|
|||
---
|
||||
title: Automaton
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: computability::automaton
|
||||
tags:
|
||||
- automaton
|
||||
- computability
|
||||
---
|
||||
|
||||
## Finite Automata
|
||||
|
||||
A **finite automaton** is a $5$-tuple $\langle Q, \Sigma, \delta, q_0, F \rangle$, where
|
||||
|
||||
1. $Q$ is a finite set called the **states**;
|
||||
2. $\Sigma$ is a finite set called the alphabet;
|
||||
3. $\delta \colon Q \times \Sigma \rightarrow Q$ is the **transition function**;
|
||||
4. $q_0 \in Q$ is the **start state**; and
|
||||
5. $F \subseteq Q$ is the set of **final states**.
|
||||
|
||||
These automaton are typically denoted using a **state diagram** like below. The start state is indicated by an arrow pointing at it from nowhere. An accept state is denoted with a double circle.
|
||||
|
||||
![[state-diagram.png]]
|
||||
|
||||
A [[language]] is called a **regular language** if a finite automaton recognizes it.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A finite automaton comprises of how many components?
|
||||
Back: Five.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643206-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $Q$?
|
||||
Back: A finite set of states.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643211-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $Q$?
|
||||
Back: $M$'s states.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643215-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What is $\Sigma$?
|
||||
Back: An alphabet.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643218-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $\delta$?
|
||||
Back: A function.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643221-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $\delta$?
|
||||
Back: $M$'s transition function.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643224-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What is $\delta$'s domain?
|
||||
Back: $Q \times \Sigma$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643227-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What is $\delta$'s codomain?
|
||||
Back: $Q$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643230-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $q_0$?
|
||||
Back: An urelement.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643233-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $q_0$?
|
||||
Back: $M$'s start state.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643238-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What name is given to $F$?
|
||||
Back: $M$'s final states.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643242-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What kind of mathematical entity is $F$?
|
||||
Back: A finite set.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643247-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. How does $F$ relate to $Q$?
|
||||
Back: $F \subseteq Q$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643252-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. How does $q_0$ relate to $Q$?
|
||||
Back: $q_0 \subseteq Q$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643257-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. How does $q_0$ relate to $F$?
|
||||
Back: N/A.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643263-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M$. How many start states does $M$ have?
|
||||
Back: One.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643267-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M$. How many accept states does $M$ have?
|
||||
Back: Zero or more.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643272-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M$. How is $M$'s start state denoted in a state diagram?
|
||||
Back: With an arrow pointing to it from nowhere.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643277-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M$. How is $M$'s final states denoted in a state diagram?
|
||||
Back: With double circles.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643282-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M$. How is $M$'s transition function denoted in a state diagram?
|
||||
Back: As edges to and from states.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643286-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M$. How is $M$'s alphabet denoted in a state diagram?
|
||||
Back: With symbols labeling each edge.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643291-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $Q$ evaluate to?
|
||||
![[state-diagram.png]]
|
||||
Back: $Q = \{q_1, q_2, q_3\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643296-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $\Sigma$ evaluate to?
|
||||
![[state-diagram.png]]
|
||||
Back: $\Sigma = \{0, 1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643301-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $q_0$ evaluate to?
|
||||
![[state-diagram.png]]
|
||||
Back: $q_0 = q_1$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643305-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
||||
![[state-diagram.png]]
|
||||
Back: $\{q_1, q_2, q_3\} \times \{0, 1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643309-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
||||
![[state-diagram.png]]
|
||||
Back: $\{q_1, q_2, q_3\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643313-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider diagram of finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. What does $F$ evaluate to?
|
||||
![[state-diagram.png]]
|
||||
Back: $F = \{q_2\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643317-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to a finite automaton's standard graphical depiction?
|
||||
Back: Its state diagram.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643321-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:Edges} are to {2:diagraphs} whereas {2:transitions} are to {1:state diagrams}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643325-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:Vertices} are to {2:graphs} whereas {2:states} are to {1:state diagrams}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643328-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {final} states of a finite automaton are also called the {accept} states.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643332-->
|
||||
END%%
|
||||
|
||||
If $s$ is processed by machine $M$ such that $M$ finishes in an accept state, we say $M$ **accepts** $s$. Otherwise $M$ **rejects** $s$. If $A$ is the set of all strings that $M$ accepts, we say that $A$ is the **language of machine $M$**, denoted $L(M) = A$. We say that $M$ **recognizes** $A$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for finite automaton $M$ to accept string $s$?
|
||||
Back: $M$ finishes processing $s$ on an accept state.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643336-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for finite automaton $M$ to reject string $s$?
|
||||
Back: $M$ finishes processing $s$ on a non-accept state.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643342-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $M$ be a finite automaton. What is the language of $M$?
|
||||
Back: The set of strings $M$ accepts.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643347-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Finite automaton $M$ {1:accepts} {2:strings} and {2:recognizes} {1:languages}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643352-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the language of finite automaton $M$ denoted?
|
||||
Back: As $L(M)$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643358-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $M$ be a finite automaton. What is $L(M)$ called?
|
||||
Back: The language of $M$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643364-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $M$ be a finite automaton. What kind of mathematical entity is $L(M)$?
|
||||
Back: A set (of strings).
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643370-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many strings can a finite automaton potentially accept?
|
||||
Back: Zero or more.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643375-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many languages can a finite automaton potentially recognize?
|
||||
Back: Exactly one.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643380-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppoe finite automaton $M$ does not accept any strings. What language does it recognize?
|
||||
Back: $\varnothing$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643385-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $Q$ evaluate to?
|
||||
![[state-diagram-ends1.png]]
|
||||
Back: $Q = \{q_1, q_2\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643390-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\Sigma$ evaluate to?
|
||||
![[state-diagram-ends1.png]]
|
||||
Back: $\Sigma = \{0, 1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643396-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $F$ evaluate to?
|
||||
![[state-diagram-ends1.png]]
|
||||
Back: $F = \{q_2\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643402-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $q_0$ evaluate to?
|
||||
![[state-diagram-ends1.png]]
|
||||
Back: $q_0 = q_1$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643408-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
||||
![[state-diagram-ends1.png]]
|
||||
Back: $\{q_1, q_2\} \times \{0, 1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643415-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
||||
![[state-diagram-ends1.png]]
|
||||
Back: $\{q_1, q_2\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643420-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $L(M)$ evaluate to?
|
||||
![[state-diagram-ends1.png]]
|
||||
Back: $\{w \mid w \text{ ends with a } 1 \}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643424-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $Q$ evaluate to?
|
||||
![[state-diagram-ends0.png]]
|
||||
Back: $Q = \{q_1, q_2\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643428-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\Sigma$ evaluate to?
|
||||
![[state-diagram-ends0.png]]
|
||||
Back: $\Sigma = \{0, 1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643433-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $F$ evaluate to?
|
||||
![[state-diagram-ends0.png]]
|
||||
Back: $F = \{q_1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643440-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $q_0$ evaluate to?
|
||||
![[state-diagram-ends0.png]]
|
||||
Back: $q_0 = q_1$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643445-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{dom}}\delta$ evaluate to?
|
||||
![[state-diagram-ends0.png]]
|
||||
Back: $\{q_1, q_2\} \times \{0, 1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643450-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $\mathop{\text{ran}}\delta$ evaluate to?
|
||||
![[state-diagram-ends0.png]]
|
||||
Back: $\{q_1, q_2\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643455-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider finite automaton $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ below. What does $L(M)$ evaluate to?
|
||||
![[state-diagram-ends0.png]]
|
||||
Back: $\{w \mid w = \epsilon \lor w \text{ ends with a } 0 \}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734999643459-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a regular language?
|
||||
Back: A language recognized by some finite automaton.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1735008834183-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A {regular} language is a language {recognized by some finite automaton}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1735008834191-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
|
@ -0,0 +1,3 @@
|
|||
---
|
||||
title: Computability
|
||||
---
|
|
@ -0,0 +1,290 @@
|
|||
---
|
||||
title: Language
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: language
|
||||
tags:
|
||||
- language
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
An **alphabet** is any nonempty finite set. The members of an alphabet are called **symbols** of the alphabet. A **string over an alphabet** is a finite sequence of symbols from that alphabet, usually written next to one another without separation.
|
||||
|
||||
Then **length** of a string $w$ over an alphabet, denoted $\lvert w \rvert$, is the number of symbols $w$ contains. The **empty string**, denoted $\epsilon$, is the string of length $0$. The **reverse** of $w$ is the string obtained by writing $w$ in the opposite order.
|
||||
|
||||
String $z$ is a **substring** of $w$ if $z$ appears consecutively within $w$. The **concatenation** of strings $x$ and $y$, written $xy$, is the string obtained by appending $y$ to the end of $x$. We say string $x$ is a **prefix** of string $y$ if a string $z$ exists where $xz = y$. We say $x$ is a **proper prefix** of $y$ if $x \neq y$.
|
||||
|
||||
A **language** is a set of strings. A language is **prefix-free** if no member is a proper prefix of another member.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is an alphabet?
|
||||
Back: A nonempty finite set.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366600-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
An alphabet is a set satisfying what two properties?
|
||||
Back: It is nonempty and finite.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366604-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a symbol of an alphabet?
|
||||
Back: A member of the alphabet.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366608-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to members of an alphabet?
|
||||
Back: Symbols.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366611-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
A {symbol} is a {member} of an {alphabet}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366614-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a string over an alphabet?
|
||||
Back: A finite sequence of symbols from that alphabet.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366618-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical entity is a string over an alphabet?
|
||||
Back: A finite sequence.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366621-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
$01001$ is a string over what minimal alphabet?
|
||||
Back: $\{0, 1\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366624-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
$hello$ is a string over what minimal alphabet?
|
||||
Back: $\{e, h, l, o\}$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366627-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the length of string $s$ over alphabet $\Sigma$ denoted?
|
||||
Back: As $\lvert s \rvert$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366630-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the length of a string over an alphabet defined?
|
||||
Back: As the number of symbols in the string.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366633-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $w$ be a string over some alphabet. How is the length of $w$ denoted?
|
||||
Back: $\lvert w \rvert$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366636-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the empty string over an alphabet?
|
||||
Back: The string of length $0$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366639-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the empty string over an alphabet typically denoted?
|
||||
Back: $\epsilon$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366642-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the reverse of string $w$ over some alphabet?
|
||||
Back: The string obtained by writing $w$ in opposite order.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366645-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the reverse of string $w$ over some alphabet typically denoted?
|
||||
Back: $w^R$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366648-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How does the length of a string relate to the length of its reverse?
|
||||
Back: They are equal.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366651-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How does the length of a string relate to the length of a substring?
|
||||
Back: The latter is less than or equal to the former.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366655-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a substring of string $w$ over some alphabet?
|
||||
Back: A string that appears consecutively within $w$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366659-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x$ and $y$ be strings over some alphabet. How is their concatenation denoted?
|
||||
Back: $xy$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366662-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x$ and $y$ be strings over some alphabet. What is the length of $\lvert x y \rvert$?
|
||||
Back: $\lvert x \rvert + \lvert y \rvert$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366666-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the concatenation of strings $x$ and $y$ over some alphabet denoted?
|
||||
Back: $xy$
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366671-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x$ be a string over some alphabet. What does $xx$ denote?
|
||||
Back: The concatenation of $x$ with itself.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366675-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Let $x$ be a string over some alphabet. Then {$xx$} $=$ {$x^2$}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366679-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $x$ be a string over some alphabet. What does $x^k$ denote?
|
||||
Back: The concatenation of $x$ with itself $k$ times.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366683-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for string $x$ to be a prefix of string $y$ over some alphabet?
|
||||
Back: There exists some string $z$ such that $xz = y$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366687-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for string $x$ to be a proper prefix of string $y$ over some alphabet?
|
||||
Back: There exists some string $z$ such that $xz = y$ and $x \neq y$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366692-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for string $x$ to be a suffix of string $y$ over some alphabet?
|
||||
Back: There exists some string $z$ such that $zx = y$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366697-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for string $x$ to be a proper suffix of string $y$ over some alphabet?
|
||||
Back: There exists some string $z$ such that $zx = y$ and $x \neq y$.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366702-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a language?
|
||||
Back: A nonempty set of strings.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366705-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A language is a set satisfying what?
|
||||
Back: It contains strings over some alphabet.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366709-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:Symbols} are to {2:alphabets} whereas {2:strings} are to {1:languages}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366713-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a language to be prefix-free?
|
||||
Back: No member is a *proper* prefix of another member.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366717-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a language to be suffix-free?
|
||||
Back: No member is a *proper* suffix of another member.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366720-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
|
@ -8,6 +8,10 @@ tags:
|
|||
|
||||
## Overview
|
||||
|
||||
TODO
|
||||
|
||||
## Extensions
|
||||
|
||||
The following ERE (**E**xtended **R**egular **E**xpression) operators were defined to achieve consistency between programs like `grep`, `sed`, and `awk`. In POSIX, regexps are greedy.
|
||||
|
||||
%%ANKI
|
||||
|
@ -253,7 +257,7 @@ Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 202
|
|||
<!--ID: 1707050923713-->
|
||||
END%%
|
||||
|
||||
## Character Classes
|
||||
### Character Classes
|
||||
|
||||
Notation for describing a class of characters specific to a given locale/character set.
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
---
|
||||
title: Data Models
|
||||
---
|
|
@ -1,8 +1,9 @@
|
|||
---
|
||||
title: RDF
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: ontology::rdf
|
||||
FILE TAGS: data_model::rdf
|
||||
tags:
|
||||
- data_model
|
||||
- rdf
|
||||
---
|
||||
|
||||
|
@ -173,7 +174,7 @@ END%%
|
|||
Cloze
|
||||
RDF is a {data model} whereas XML is a {serialization}.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
Tags: xml
|
||||
Tags: serialization::xml
|
||||
<!--ID: 1734805690321-->
|
||||
END%%
|
||||
|
||||
|
@ -182,7 +183,7 @@ Basic
|
|||
How might RDF and XML relate to one another?
|
||||
Back: XML can be used to serialize RDF.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
Tags: xml
|
||||
Tags: serialization::xml
|
||||
<!--ID: 1734805690328-->
|
||||
END%%
|
||||
|
|
@ -1,8 +1,9 @@
|
|||
---
|
||||
title: Uniform Resource Identifiers
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: uri
|
||||
FILE TAGS: encoding::uri
|
||||
tags:
|
||||
- encoding
|
||||
- uri
|
||||
---
|
||||
|
||||
|
|
|
@ -0,0 +1,204 @@
|
|||
---
|
||||
title: Bash
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: bash
|
||||
tags:
|
||||
- bash
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Bash, the Bourne-Again Shell, is a shell program and command language.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How do you escape a `'` within a single-quote string?
|
||||
Back: This is impossible.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816752230-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the null string refer to?
|
||||
Back: The empty string, i.e. `""`.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816752237-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When does Bash remove null strings from a command?
|
||||
Back: When they occur as part of a non-null command-line argument.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816752241-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why does the following not work correctly?
|
||||
```bash
|
||||
$ # -F specifies the field separator
|
||||
$ awk -F"" 'program' files
|
||||
```
|
||||
Back: Bash removes the null string before executing the command.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706816764555-->
|
||||
END%%
|
||||
|
||||
## Prompts
|
||||
|
||||
According to Robbins a POSIX-compliant shell (like Bash) generally has the primary and secondary prompts denoted with `$` and `>` respectively. Adjust these values using environment variables `$PS1` and `PS2` respectively.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What symbol is usually used to denote the primary prompt?
|
||||
Back: `$$`
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706882670149-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What environment variable controls Bash's primary prompt?
|
||||
Back: `$$PS1`
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706973587222-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What symbol is usually used to denote the secondary prompt?
|
||||
Back: `>`
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706882670158-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What environment variable controls Bash's secondary prompt?
|
||||
Back: `$$PS2`
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706973587232-->
|
||||
END%%
|
||||
|
||||
Paths supplied to commands are typically "sanitized" by prefixing the path name with `./`. This is mentioned in a few different places:
|
||||
|
||||
* `find -execdir` performs this prefixing automatically on all found files.
|
||||
* `awk` ambiguously interprets a file named e.g. `count=1` as variable assignment. Should write `$ awk -f program.awk ./count=1`.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What methodology is commonly used to "sanitize" paths supplied as command-line arguments?
|
||||
Back: Prefixing the paths with `./`.
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706885111460-->
|
||||
END%%
|
||||
|
||||
## Shebang
|
||||
|
||||
The shebang (also writting shabang or sha-bang) is a magic character at the start of a script indicating what command should be run when invoking the script directly. It always begins with ASCII characters `#!`.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What ASCII characters do shebangs start with?
|
||||
Back: `#!`
|
||||
Reference: Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
<!--ID: 1706726911458-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What class of programs can be specified in a shebang?
|
||||
Back: Interpreters
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911461-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The OS will parse a shebang into what three parts?
|
||||
Back: `#!`, the interpreter, and the rest of the line as a single argument.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911464-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What gotcha does Robbins highlight with shebang parsing?
|
||||
Back: The remainder of the line following the interpreter is passed as a *single* argument.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911467-->
|
||||
END%%
|
||||
|
||||
Some systems limit the length of interpreters to just 32 characters. A simple workaround when encountering this limitation is to introduce a symbolic link.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What workaround is used when shebang interpreter names are too long?
|
||||
Back: Introduce a symbolic link.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911470-->
|
||||
END%%
|
||||
|
||||
## Robustness
|
||||
|
||||
An interesting point Robbins discusses in his introduction to [[posix/awk/index|gawk]] is this idea of command robustness. He states that:
|
||||
|
||||
> A self-contained shell script is more reliable because there are no other files to misplace.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a self-contained shell script?
|
||||
Back: A shell script that does not rely on the presence of other files.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911473-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What makes a self-contained shell script more reliable?
|
||||
Back: There are no other files to misplace.
|
||||
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
||||
<!--ID: 1706726911475-->
|
||||
END%%
|
||||
|
||||
He argues that the first command below is more robust than the second since the command is more loosely coupled to its environment:
|
||||
|
||||
```bash
|
||||
$ awk 'program' input-file1 input-file2 ...
|
||||
$ awk -f program-file input-file1 input-file2 ...
|
||||
```
|
||||
|
||||
It's interesting to think what else can be used as a measure of a command's robustness:
|
||||
|
||||
* Required environment variables or environment variables formatted in a certain way
|
||||
* `$PATH` needs to point to a specific location
|
||||
* Whether the invoked program is present by default in a distribution or must be installed
|
||||
* The ability to run with or without an associated TTY
|
||||
* The ability to run with or without associated standard streams
|
||||
* `stdout`, `stderr`, `stdin`
|
||||
* How backwards compatible the invoked program is
|
||||
* Version mismatch may silently cause the same invocation to fail
|
||||
* Expected permissions
|
||||
* EUID, read permissions on an input file, etc.
|
||||
* Determinism of the program itself
|
||||
* Does output rely entirely on input or can it make nondeterministic choices
|
||||
* The amount of resources dedicated to the program
|
||||
* Failure may occur if not enough memory is provided to the command
|
||||
* Whether a program acts idempotently
|
||||
* What happens if I run the command twice in a row?
|
||||
* Whether a program acts atomically
|
||||
* Is it possible intermediate files are left that affect subsequent runs?
|
||||
* The presence of timeouts
|
||||
* Perhaps a program waits a specified amount of time before input is available. The command's success is now externally determined.
|
||||
* Locale-aware functionality
|
||||
* Consider for instance [[posix/awk/index|gawk]]'s `\u` [[escape-sequences|sequence]] which targets characters in the current locale's character set as opposed to specifically Unicode.
|
||||
* POSIX standard [[regexp#Character Classes|character classes]] serve as another example.
|
||||
|
||||
The above scenarios are what makes something like nix so compelling.
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Cooper, Mendel. “Advanced Bash-Scripting Guide,” n.d., 916.
|
||||
* Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
|
|
@ -0,0 +1,3 @@
|
|||
---
|
||||
title: Serialization
|
||||
---
|
|
@ -1,8 +1,9 @@
|
|||
---
|
||||
title: XML
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: xml
|
||||
FILE TAGS: serialization::xml
|
||||
tags:
|
||||
- serialization
|
||||
- xml
|
||||
---
|
||||
|
Loading…
Reference in New Issue