From 6c9e34e19209e0bc3bb850367afa46a8f31dfcc6 Mon Sep 17 00:00:00 2001 From: Joshua Potter Date: Sat, 15 Jun 2024 09:38:37 -0600 Subject: [PATCH] Expand notes on function categories. --- .../plugins/obsidian-to-anki-plugin/data.json | 21 +- notes/_journal/2024-06-15.md | 11 + notes/_journal/{ => 2024-06}/2024-06-13.md | 0 notes/_journal/2024-06/2024-06-14.md | 12 + notes/algebra/sequences/delta-constant.md | 2 +- notes/lambda-calculus/alpha-conversion.md | 85 +++- notes/logic/equiv-trans.md | 2 +- notes/set/functions.md | 444 ++++++++++++++++++ notes/set/images/function-bijective.png | Bin 0 -> 3379 bytes notes/set/images/function-general.png | Bin 0 -> 4020 bytes notes/set/images/function-injective.png | Bin 0 -> 3276 bytes notes/set/images/function-surjective.png | Bin 0 -> 3332 bytes notes/set/relations.md | 26 + 13 files changed, 588 insertions(+), 15 deletions(-) create mode 100644 notes/_journal/2024-06-15.md rename notes/_journal/{ => 2024-06}/2024-06-13.md (100%) create mode 100644 notes/_journal/2024-06/2024-06-14.md create mode 100644 notes/set/functions.md create mode 100644 notes/set/images/function-bijective.png create mode 100644 notes/set/images/function-general.png create mode 100644 notes/set/images/function-injective.png create mode 100644 notes/set/images/function-surjective.png diff --git a/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json b/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json index d832889..04a38d1 100644 --- a/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json +++ b/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json @@ -137,7 +137,11 @@ "venn-diagram-symm-diff.png", "relation-ordering-example.png", "open-addressing.png", - "closed-addressing.png" + "closed-addressing.png", + "function-bijective.png", + "function-injective.png", + "function-surjective.png", + "function-general.png" ], "File Hashes": { "algorithms/index.md": "3ac071354e55242919cc574eb43de6f8", @@ -176,7 +180,7 @@ "_journal/2024-02-02.md": "a3b222daee8a50bce4cbac699efc7180", "_journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb", "_journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970", - "logic/equiv-trans.md": "fb7f2027b2b323374580fde8a1de579e", + "logic/equiv-trans.md": "c52d0907d35d7a3c2e4576f2bd411257", "_journal/2024-02-07.md": "8d81cd56a3b33883a7706d32e77b5889", "algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2", "algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9", @@ -377,7 +381,7 @@ "_journal/2024-04-16.md": "0bf6e2f2a3afab73d528cee88c4c1a92", "_journal/2024-04/2024-04-15.md": "256253b0633d878ca58060162beb7587", "algebra/polynomials.md": "da56d2d6934acfa2c6b7b2c73c87b2c7", - "algebra/sequences/delta-constant.md": "70f45d7b8d5c3a147fabc279105c4983", + "algebra/sequences/delta-constant.md": "d9af958375cdf993e4ac3c68c1324ba7", "_journal/2024-04-19.md": "a293087860a7f378507a96df0b09dd2b", "_journal/2024-04/2024-04-18.md": "f6e5bee68dbef90a21ca92a846930a88", "_journal/2024-04/2024-04-17.md": "331423470ea83fc990c1ee1d5bd3b3f1", @@ -503,12 +507,12 @@ "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", - "set/relations.md": "303f83287d33a300cf8c7fafe2834235", + "set/relations.md": "d486836acec494ea3b185ec9746df7c9", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", "_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3", - "lambda-calculus/alpha-conversion.md": "c0d40271a14b1f44b937de7791ca089b", + "lambda-calculus/alpha-conversion.md": "9965a24624a745af16f10d9ffd78cc0c", "lambda-calculus/index.md": "756c93b8717fd00b04f8a99509066486", "x86-64/instructions/condition-codes.md": "56ad6eb395153609a1ec51835925e8c9", "x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199", @@ -526,7 +530,12 @@ "hashing/open-addressing.md": "c27e92f2865bbb426fdd1e30fc52f1ed", "hashing/closed-addressing.md": "962a48517969bf5e410cf78fc584051f", "_journal/2024-06-13.md": "dec86b3a3e43eca306c3cf9a46b260ed", - "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e" + "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e", + "_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", + "_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728", + "set/functions.md": "34bf35a8ae16a0d735ce7e3e1b5bfa05", + "_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4", + "_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307" }, "fields_dict": { "Basic": [ diff --git a/notes/_journal/2024-06-15.md b/notes/_journal/2024-06-15.md new file mode 100644 index 0000000..b9970e9 --- /dev/null +++ b/notes/_journal/2024-06-15.md @@ -0,0 +1,11 @@ +--- +title: "2024-06-15" +--- + +- [x] Anki Flashcards +- [x] KoL +- [x] OGS +- [ ] Sheet Music (10 min.) +- [ ] Korean (Read 1 Story) + +* [[functions|Notes]] on injections, surjections, and bijections. \ No newline at end of file diff --git a/notes/_journal/2024-06-13.md b/notes/_journal/2024-06/2024-06-13.md similarity index 100% rename from notes/_journal/2024-06-13.md rename to notes/_journal/2024-06/2024-06-13.md diff --git a/notes/_journal/2024-06/2024-06-14.md b/notes/_journal/2024-06/2024-06-14.md new file mode 100644 index 0000000..a5ff0ea --- /dev/null +++ b/notes/_journal/2024-06/2024-06-14.md @@ -0,0 +1,12 @@ +--- +title: "2024-06-14" +--- + +- [x] Anki Flashcards +- [x] KoL +- [x] OGS +- [ ] Sheet Music (10 min.) +- [ ] Korean (Read 1 Story) + +* Finished most notes on [[alpha-conversion|α-conversion]]. +* Starting notes on [[functions]]. \ No newline at end of file diff --git a/notes/algebra/sequences/delta-constant.md b/notes/algebra/sequences/delta-constant.md index bd163f4..2a7d906 100644 --- a/notes/algebra/sequences/delta-constant.md +++ b/notes/algebra/sequences/delta-constant.md @@ -119,7 +119,7 @@ END%% %%ANKI Cloze -The closed formula for a sequence will be a {degree $k$ polynomial} if and only if the $k$th differences {is constant}. +The closed formula for a sequence will be a {degree $k$ polynomial} if and only if the $k$th differences are {constant}. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% diff --git a/notes/lambda-calculus/alpha-conversion.md b/notes/lambda-calculus/alpha-conversion.md index b20852b..03f7b5c 100644 --- a/notes/lambda-calculus/alpha-conversion.md +++ b/notes/lambda-calculus/alpha-conversion.md @@ -152,6 +152,8 @@ Let $x$, $y$, and $v$ be distinct variables. Then * $v \not\in FV(M) \Rightarrow [P/v][v/x]M \equiv_\alpha [P/x]M$ * $v \not\in FV(M) \Rightarrow [x/v][v/x]M \equiv_\alpha M$ * $y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ +* $x \not\in FV(Q) \land y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [Q/y][P/x]M$ +* $[P/x][Q/x]M \equiv_\alpha [([P/x]Q)/x]M$ %%ANKI Basic @@ -186,9 +188,8 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi END%% %%ANKI -Basic -$[P/v][v/x]M \equiv_\alpha [P/x]M$ is necessary for what condition? -Back: $v \not\in FV(M)$ +Cloze +{$v \not\in FV(M)$} $\Rightarrow [P/v][v/x]M \equiv_\alpha [P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% @@ -266,16 +267,53 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi END%% %%ANKI -Basic -$[P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ is necessary for what condition? -Back: $y \not\in FV(P)$ +Cloze +{$y \not\in FV(P)$} $\Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% +%%ANKI +Cloze +{$x \not\in FV(Q) \land y \not\in FV(P)$} $\Rightarrow [P/x][Q/y]M \equiv_\alpha [Q/y][P/x]M$ +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + %%ANKI Basic -What happens if the antecedent is false in $y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$? +$[P/x][Q/y]M \equiv_\alpha [Q/y][P/x]M$ is a specialization of what more general congruence? +Back: $[P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + +%%ANKI +Cloze +{$F$} $\Rightarrow [P/x][Q/x]M \equiv_\alpha [([P/x]Q)/x]M$ +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + +%%ANKI +Basic +What expression containing nested substitutions is congruent to $[P/x][Q/x]M$? +Back: $[([P/x]Q)/x]M$ +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + +%%ANKI +Basic +What expression containing adjacent substitutions is congruent to $[([P/x]Q)/x]M$? +Back: $[P/x][Q/x]M$ +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + +%%ANKI +Basic +What happens if the antecedent of the following lemma is false? $$y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$$ Back: $y$ is subbed in $M$ on the LHS but subbed in both $P$ and $M$ on the RHS. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). @@ -313,6 +351,39 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi END%% +For $\lambda$-terms $M$, $M'$, $N$, and $N'$, and variable $x$, $$M \equiv_\alpha M' \land N \equiv_\alpha N' \Rightarrow [N/x]M \equiv_\alpha [N'/x]M'$$ + +%%ANKI +Basic +The proof of which implication shows "substitution is well-behaved w.r.t. $\alpha$-conversion"? +Back: $M \equiv_\alpha M' \land N \equiv_\alpha N' \Rightarrow [N/x]M \equiv_\alpha [N'/x]M'$ +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + +%%ANKI +Basic +What does Hindley et al. mean by "substitution is well-behaved w.r.t. $\alpha$-conversion"? +Back: $\alpha$-converting substitution inputs yields congruent outputs. +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + +%%ANKI +Cloze +{$M \equiv_\alpha M' \land N \equiv_\alpha N'$} $\Rightarrow [N/x]M \equiv_\alpha [N'/x]M'$ +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + +%%ANKI +Basic +What does Hindley et al. say the following implication says about substitution? $$M \equiv_\alpha M' \land N \equiv_\alpha N' \Rightarrow [N/x]M \equiv_\alpha [N'/x]M'$$ +Back: It is well-defined with respect to $\alpha$-conversion. +Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). + +END%% + ## Bibliography * Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). \ No newline at end of file diff --git a/notes/logic/equiv-trans.md b/notes/logic/equiv-trans.md index 3b5fed8..9ce5ed1 100644 --- a/notes/logic/equiv-trans.md +++ b/notes/logic/equiv-trans.md @@ -506,7 +506,7 @@ END%% %%ANKI Basic If $x \neq e$, why might $E_e^x = E$ be an equivalence despite $x$ existing in $E$? -Back: If the only occurrences of $x$ in $E$ are bound. +Back: The only occurrences of $x$ in $E$ may be bound. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% diff --git a/notes/set/functions.md b/notes/set/functions.md new file mode 100644 index 0000000..6ff9d2d --- /dev/null +++ b/notes/set/functions.md @@ -0,0 +1,444 @@ +--- +title: Functions +TARGET DECK: Obsidian::STEM +FILE TAGS: set::function +tags: + - function + - set +--- + +## Overview + +A **function** $F$ is a single-valued [[relations|relation]]. We say $F$ **maps $A$ into $B$**, denoted $F \colon A \rightarrow B$, if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F \subseteq B$. + +%%ANKI +Basic +Which of relations or functions is the more general concept? +Back: Relations. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What *is* a function? +Back: A relation $F$ such that for each $x \in \mathop{\text{dom}}F$, there exists a unique $y$ such that $xFy$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +For function $F$ and $x \in \mathop{\text{dom}}F$, what name is given to $F(x)$? +Back: The value of $F$ at $x$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Who introduced the function notation $F(x)$? +Back: Leonhard Euler. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F$ be a function and $\langle x, y \rangle \in F$. Rewrite the membership as an expression excluding $y$. +Back: $\langle x, F(x) \rangle \in F$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F$ be a function and $\langle x, y \rangle \in F$. Rewrite the membership as an expression excluding $x$. +Back: N/A. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider notation $F(x)$. What assumption is $F$ assumed to satisfy? +Back: It is assumed to be a function. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider notation $F(x)$. What assumption is $x$ assumed to satisfy? +Back: It is assumed to be in the domain of $F$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Cloze +A function is a {single-valued} relation. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +How is $F \colon A \rightarrow B$ pronounced? +Back: $F$ maps $A$ into $B$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What three conditions hold iff $F$ maps $A$ into $B$? +Back: $F$ is a function, $\mathop{\text{dom}}F = A$, and $\mathop{\text{ran}}F \subseteq B$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider function $F \colon A \rightarrow B$. What term is used to refer to $A$? +Back: The domain. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider function $F \colon A \rightarrow B$. What term is used to refer to $B$? +Back: The codomain. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +How does the range of a function compare to its codomain? +Back: The range is a subset of the codomain. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +## Injections + +A function is **injective** or **one-to-one** if each element of the codomain is mapped to by at most one element of the domain. + +%%ANKI +Basic +What does it mean for a function to be injective? +Back: Each element of the codomain is mapped to by at most one element of the domain. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +What does it mean for a function to be one-to-one? +Back: Each element of the codomain is mapped to by at most one element of the domain. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Each element of an injection's codomain is mapped to by how many elements of the domain? +Back: At most one. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Suppose `Function.Injective f` for $f \colon A \rightarrow B$. What predicate logical formula describes $f$? +Back: $\forall a_1, a_2 \in A, (f(a_1) = f(a_2) \Rightarrow a_1 = a_2$) +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). +Tags: lean logic::predicate + +END%% + +%%ANKI +Basic +Does the following depict an injection? +![[function-bijective.png]] +Back: Yes. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Does the following depict a one-to-one function? +![[function-injective.png]] +Back: Yes. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Does the following depict a one-to-one function? +![[function-surjective.png]] +Back: No. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +*Why* isn't the following an injection? +![[function-general.png]] +Back: Both $1 \mapsto d$ and $2 \mapsto d$. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Is a single-valued set a function? +Back: Not necessarily. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is a single-valued relation a function? +Back: Yes. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is a single-rooted set a function? +Back: Not necessarily. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is a single-rooted relation a function? +Back: Not necessarily. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Cloze +{One-to-one} is to functions whereas {single-rooted} is to relations. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is a one-to-one function a single-rooted relation? +Back: Yes. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is a single-rooted relation a one-to-one function? +Back: Not necessarily. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is a single-rooted function a one-to-one function? +Back: Yes. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +## Surjections + +A function is **surjective** or **onto** if each element of the codomain is mapped to by at least one element of the domain. That is, **$F$ maps $A$ onto $B$** if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F = B$. + +%%ANKI +Basic +What does it mean for function to be surjective? +Back: Each element of the codomain is mapped to by at least one element of the domain. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +What does it mean for a function to be onto? +Back: Each element of the codomain is mapped to by at least one element of the domain. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Each element of a surjection's codomain is mapped to by how many elements of the domain? +Back: At least one. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Suppose `Function.Surjective f` for $f \colon A \rightarrow B$. What predicate logical formula describes $f$? +Back: $\forall b \in B, \exists a \in A, f(a) = b$ +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). +Tags: lean logic::predicate + +END%% + +%%ANKI +Cloze +{1:Injective} is to {2:one-to-one} as {2:surjective} is to {1:onto}. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +What three conditions hold iff $F$ maps $A$ onto $B$? +Back: $F$ is a function, $\mathop{\text{dom}}F = A$, and $\mathop{\text{ran}}F = B$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F$ map $A$ into $B$. Does $F$ map $A$ onto $B$? +Back: Not necessarily. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F$ map $A$ onto $B$. Does $F$ map $A$ into $B$? +Back: Yes. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Cloze +Let $F$ be a function. Then $F$ maps {$\mathop{\text{dom}}F$} onto {$\mathop{\text{ran}}F$}. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Does the following depict a surjection? +![[function-bijective.png]] +Back: Yes. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Does the following depict an onto function? +![[function-injective.png]] +Back: No. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Does the following depict an onto function? +![[function-surjective.png]] +Back: Yes. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +*Why* isn't the following a surjection? +![[function-general.png]] +Back: No element of $X$ maps to $b \in Y$. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +## Bijections + +A function is **bijective** or a **one-to-one correspondence** if each element of the codomain is mapped to by exactly one element of the domain. + +%%ANKI +Basic +What does it mean for a function to be bijective? +Back: It is both injective and surjective. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Each element of a bijection's codomain is mapped to by how many elements of the domain? +Back: Exactly one. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Cloze +{1:Injective} is to {2:one-to-one} as {2:bijective} is to {1:one-to-one correspondence}. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Cloze +{1:Surjective} is to {2:onto} as {2:bijective} is to {1:one-to-one correspondence}. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +Does the following depict a bijection? +![[function-bijective.png]] +Back: Yes. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +*Why* isn't the following a one-to-one correspondence? +![[function-injective.png]] +Back: The function does not map onto $Y$. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +*Why* isn't the following a one-to-one correspondence? +![[function-surjective.png]] +Back: The function is not one-to-one. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +%%ANKI +Basic +What distinguishes a one-to-one function from a one-to-one correspondence? +Back: The former is not necessarily surjective. +Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). + +END%% + +## Bibliography + +* “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). +* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). \ No newline at end of file diff --git a/notes/set/images/function-bijective.png b/notes/set/images/function-bijective.png new file mode 100644 index 0000000000000000000000000000000000000000..5b0349edde748c40a1ce7d10cd32136b3a8e032a GIT binary patch literal 3379 zcmZ`+X*kqx+y0pt8c7HlvNK~0jh#uwWM9S%Gt(G^!AKfmCLz_>m+XwkM4s$pLTa+) z--1ZCv{<4nLkrTsP!cWg{Ga1}KfE8F5BGH*=XKrZdE6iF>pJc`6Nhz_f%RBMb!UBlu>Szc2NzWU8C}iSHXLoz?_q$}}wf0G5-3kGKJ%^p`YzeW` zpRQeC?jJwce{4#sOkAY!i;I*K$f?Iik0fSmIh{ldC)(kk;ze73d*wA{Q7DxZ{GP&O z5!*4+?)^7vx%a4eq`I^;R|3|jsV$nk52S757PC?MThI~_6B_#W@akg3?YW=)!;JIm zoX>CWGCs`i{H3^%rQh7~e<6+iG=YbY&8h4XHOD{o)q9e*jxdOY2Lr&5{esGjH%nA^ zjKCi7+{zZn`VHE{-z@&x^nnDkDE1~NM22EdmJ9n6g=p9fyX`gBqk z;`h&r23WNZfX?Yd*vyg^f`Nm8^0?)sYK?YoLwnVk6&HE&AK91I)#cY5b2rTNWT($b zLq-RZ8Oomli|Q5|4Bw#&bzGs;ck`LOft}9*ISc&`-!nlq+g8ag4=RIv%!k4j+l%zH z(@oCo3P2<)^^&hn>E{snr5M$j<^B(*z5aJKc`5r2)>_OsFIp2-*h_D;t5*h?vx_QO z-#@E_cjT$k3kI=IJ5!EDDefI4_aDuDZey%yRIL1@mct$v;Pz)1<|B$G!`@mSLJ@*K zquxiUO5ZG0t?#@FftKDZYr4<^SiH+VJxB0(_T;8I; zoQSc_sOU7ZXLk+3_j9&kyN4YE^>Skz>}4RM^UOFyzcHyifuH)e^oL^3v zRLPvq!30)%)Td;`m7-NeLz~vIR8MS52kj6{KAh{dGv64l{_WoD&4#+FFOd?t8*s?^ zHaZW9y=A5??G1ZvrBvl6+<6l}s$;u3642BT^lp(BMs6rHYx5hz{vOgK@r$OkQ}a%% z=M2AmQ{*J_nfs|`fnp<<{K)B>!bP(-L%~@fc*82Z$DuDCTcpJNTtlLrgY|!jRVrUd zMtRcTXG}KF&Nk0U(z@m0(6jj%LMC{ppK&BFit=UuM4<=R;O#~VmS-Fhtkq9vpOAYs z;%Xc56&aK7C>544qM*C|X|6BMVeRhRgo*X2_2ae7gZ$q%I`%!VHSqmYB7>Z!B1ERg z61S|!sZS*o5ixQxE_e-W*7Y4Ji4vPHosOHN9NIv6ESJ^Z6x{j3jmUDY8$z-;a9;&o z-iURR7fmFg|9Ieas#xpQ6Wz_;*BS&(D7^dFo9$}vDY)(9f~l&NRM-=_{$}qlvZ{uA zm5Gu3a^wg9!0QX%(B)eGT;Hz7nj}YL_SVPaa*Q5KD(y(PaxIdo^s)4Yw;bR3-Mo{8 z>RNYeLA2zzvsMjTR*<5e3^TFRHF`=G6&rT%KnixCd@T;sXG(;vknLhyQy9AGeS^+@ zpWwa+X^r8yj#eog-i_TPaH6_v!G46VdRaBRm+HCM&NYu(kM=a$o9d&Od+ z;=(v)X%2E0=||}G_{gvK$_ZzJ4i~&M?4EGm%~gT6a%5IB)F)yL6}jV1w(_S)s(J}B zwvG2|Aa-o!l6+e1G5qsR6{8*!MuTce_w_9zIa_ zy4UBU{s{gfso_#LbO!Z2C`n`xO89-PaUhuSY^>ouZdB&m1~QtnH&|>r{{_j>kOp=~ z>!I`Aq2D0~4Xz{{U7)Nah9q<^kS^>ncA2E+Zb+S<@2L(Ysma1kLM9B5H79>19E`I( zWyIn0qVk>D*sNx49DSt}l0O)HJ7E~=Dx*|Bwmh>&RKmu8OmB8GowV-WHz8QR{wO;m@N`{awUroVCnsQY{EaY{gNoQ#$eXtu7Ug6!1j{;C@nMyp_ zh)poHVnSlzXBs8Z*t2NxkNI$|ZES+8^vM8lD19;v5v5!jk~YZIISu%|3d%tksozwQ zH)PaBrBnJluUvkGx{-QT3OzD{3;PI8o2TyH{g$D&a~#w6&>+{ZrT*ZVY%#zVd}69jgja)0TsHNEo0I>4E+w*2u~2ZoCP8kM#vaSu^-t@$;^f?wUMjr z^Ia;+-xU~##x1l5Iz>DJ?_1r;sPTS*(*fT@(_lZ``)xW!h5w zyy8ku67t=SN<&7TD%h}>&P#pVb5)Qqo{4c;dZaPiHg;p9x-*(&5z48&I$$|+eet|i z&E|n@9j_;i0I!#2ULMgy_6Oloiwt?*lh3Z5PYk~8#$g|Cih#!(Sb-{66sO^|!d@-F zZJ`Cab+~Z%EJxYSu?}oX+bJW`7oeb;sAC_wxQ7PXdE4$*Bmgz>7YBQ`#+Um$8?Q@&z*llWlTLHhP5&mUUFMcTfW$82=-y8=e0=E;y=IyNIYjE9)sAx~Y+nQAGm&4&=FtXq5->pS}I&&p5gr44)$En6PaFO&k~OIG)Ewv-j2_0krp@>65;3n(8>6-oSb6u-EB zkAlksHuD^j;T0X(+cHVpt>^opi2s{P#ebI_L^h6xxV0)-Sn!krck#!XOb$S5BBuk) zUBU@nCZ;cZLjTPCgits-%_>(->owawh*gw#e^d;rGBjhBjxINP737qGX8x75sPe%y zCn0?MRcb5}do9q8U48cx#@p;<`&JuP4Edo^fG8qGlfWO`p5jiI@LFkcWi{6b3=cB* zfWs9*RVHaT-grrLv$AS^JlN$&&i0Q5Li~qpA|l>% zq+WwVc{70JA@`8844!s$Zy7Q_G#ISu$Ult7uj>WLV2WTO-?u;)S`0ZZO5a;(bJU zF~8y>!P5hwXq4^$BAu4S35s42JafV#fKHQ~@pAjM-{ZHhUO4U#D@jCX*u_o-KQBP% zdSzM{79sxk(M~1*5f21WF5fw#@kjWx&|%t>nZbd~5Oh#ZgP)004R>004l5008;`004mK004C`008P>0026e000+ooVrmw00002 zVoOIv0RM-N%)bBt00(qQO+^Ri1PB5rBKv?SS^xkJyh%hsRCwC$oq2o|MHa`uxx-CJ zxIsu*5QqfbtgCn+YE;lg1&Jte5nau$$46FIjJS#*qEUmO;z7KTLx|$RC4z_qP*{(3 zffz+|K@?%a5eS(pQ~O88m`rB6yL!5NB+f7YWTvaCYkpO)>b+N0uON&t!U!XbFv18U zj4;A50Yk{ggOj-o0AL{Va59hNFg5=1EQ0GBKHWiHn3BL~M>#f<0O-n2+J-4n!YBl< z1Mmh{h3QbkLIf9bE~~>-s3Vd6>}EUt!c=I%^#~p@s<6lwPS!4CH8P*TZ)Jl{o8uenYJ8bKYPMW9SB|d8}D%x(eQVace#-+;hxnL{h7uD zA}M7RJNOYh@$_H_myt{zip{ra+W@AI}5<`GXSWg*`hNv!`co`SRc#I)_o~H3Q z$8eHQ$56KBI0R1s(2DI04N)!5p#nRz6@{$}b8t|`S)rusP3jm1yvW}}RD*kQ@g0BE zkTRX!xVR^DWF_%4#oWNs5Y2mY5G)tHB1rjC4%Aeb8(vgYvs`}met7Qgov1i3o%<{`M*daACX0Js9d9E)c_ z2Wxa&xRI>D$p~wyO6ChX0PqGL&b92l-8jHb&BMAsbfAczgVpS15X)x%5u4&oEayP0dG-T?J zVk-x%6vZ|SWEdw~CV=n~we&ZrtbsU~Z$+g~C6}T`&X8T?l4kl_2jSvz1IwF(n^beF zoXT=M*jdXIvdAEddsvGD4+RV|_06j}NGAi!OQ4DsW*QlHd1(0BN$?bC?B2k5zBs<}!_`ufWX`L&vUOI92Assl23%EO-(pCmBiBGz9;Y z95|;M`2L4+(MvH!3dIy~9|y^jEV~bGW*Ar1GjQ{oWS)h%NH^&Hk(8S`#q$AWMmYrI z*h!hRmEWFniWFxr?YIcRI1|ab7Qy*OiGYU-13tZpl>wfN#KVJz)LDBP)jKtYrgv zTux#m1Lzp}LH-PzSKTxh3$O*(BweZHX_Yih#W0$5CbNv~EFha?;CbwH3!)Aq5R9>a ztV{%F2UEZ-+@wg6)mTZ)W&vARjfeaowD~-0EjcIA9*6G5H6V(;ysw%{X@Cdl!IxCC zhWE(f94U`LJ-%Q))?g#s^k*KaIzz;g&0;FJQ*jT?cmx@AVKljXzy@;3&}?S6$IUd0 z$a)Bu{sp!r2C0Iv*m$GiQ(H2a&KfrJ6q%}i&r!zd)|%{ui}Yn}MGf-|s>bsiZD#mH zlTHrrQpkKJ2Gryp!AWb2$ZCU=hxBE=9HC(3$l($Mmj)aeQ^{rl8(Bbhv*m-$Y{fck zW23%|FLGGNa2!Ywt9f2ERSFZC&wAb`hjb!=D2_||)PutuYV_z@5&Xy!1FKQM9?j}Q zcQSd3k6FvJ2qsxb)+B_UjRB`13|)-B5y3!d19}#MkNJpPMk~6MjlyXNGJU^PcXSO0 zHW^rrLT{NeI7$>wE@3n)8O&>JWj>iI##i%SIvJtat5$?d&rLGI9?hBw0=78^{~Qp$DI;&nw+Y8jJBZ!#7}aJ`S*#7L2~h*FyAILhco zuV7Svzxa%+>C6F%9P#vIx8Elvd_=S5s;;f?9e2sqCYTv=~l8$eyjv!4q(aUM~_6{7c$4 zm2sMM;c~u2AlL-l?j3#P$U3iild6f~P%1cNFj-YpO3pNWq4@~XOx^8II)h22J3q0D zYTyWCffzhGYFPrlQ%AI_02G;^#S}?uTFKbi7r^aPPf!YV6jQ`XW>N#d-3%cU8?cT0 z=*VH|IolyiRx+QOKvt=w$Fnzk8ug9@QW;DtLukXd?4pPQKPT+-_?`^_Y-KjE!z^`I37f_ ziu!0bc#QZ($UNM|(10^pQ*;FBiQfnu0y=0XtCK>D_Tw3f7{u!=lT;Ur$S0GPnn$5{ z2uZvT2Q*!#Q6@`idT+;5tYt7?u-b1bWg)AP*vA|Tat3W^$WpSp|Lb*~#M6snDRr^F zB5_h=IYLBMtPELdmF!C`<($PhQfb3JcCv$cl&GkS;E-4Xi3?HBavImO>M@3=spTMx zDdM#$PBeShy6)?9Ftp)!F7UK1jE3 zr7c3NZzDzOZvQSk#!Xb~tVo>1knQvxXe~mV@5B#eMk$zb??bXASyj^8 zi|z+HQ_Qv|yKhYGS=AggiLCt+3t?c>H5eRVJ7-!ahEQq}S#k?(74+71zBGnf-F1wj zmv8S^t3t6UK}SyE8>#eV#OXNo(~&g2dyavg#QHX=+VcI^WRYm_+Da1L`JYsd`mysz z&9>w^W)V*^*+HzQ`&nRCCkuuI(LVk#)LX7h&w^yOXiQzpD1#=UQaLgF+WX^-L>jO| zDn~gU%Wq>!rp`Ckw;EYLvnQw-#UIY3Txydf*r_xuR+d)ur^44it3JnUHay_rIXbqA z@31^#^U&twsybPP^fXii2GD~->0Dnk$Wk{=90T-_wFwN}f_pCLA}hw^@MXTrO?2}~ zNS&-Aellcs`30lc!?!xf!csv@13f)Uu!2#Bi9j3|vjQQVZ#T6TlU1YdMuNXc?^{>u zSAvncau!;8-f+8K-LjR2peFrT!)#WNt&;8qKPOqWVU~p_S=-{$dy*9vtDccQl}o6P zKc#fQEuMqAW1o#gaDhc+U9A6%bp2u7v6}jzP;?fK58?oEJ6r}uN>aznU{2phu}8y! zvbNmm4GJ}yG`}xfLwOLPyguh6i^%$f&-{HIttoRIuW}##6z7N5Jj4Lr1ETl?7m-Xm zU>~KFQbH*eBy%w{gYb`U;0~$X^Lo*NGlM&i-Gy2W;R+%t;)*8UB#=%fIm~Ar`>Er7 za>*ux6dgV6T!bZet6qcff4zkE$S^N5fj+8hGH>y9fcqpmQ_eziNudYbNueik2udlT zgc82zh=##nAFC`lR=$V~x(ByHGzhms$jfXx0TFx?FevA2Kk>8TNg;!5a#_YYK4uxY zOeT}`06|w4VAD8o=tmSbUiSY;Cg#v9WHBhf9??J5As)Z$x((spn zn+k8gE1?VzFpdI->#!_kFoKU6%R9l6)syddhwF4zVJVl=;R3LO1SF7#I%pOe5T zlII;du#C%}v*=+c(y*H@VaQEf#20uwEhcr=;z|r6%lr~3u3UP6(N~+s% zvC)K`gK2mq1v`svEaw@OFnCiD=6GYu^%X(xBrg zD`O>x4BbiHiK<4S4NOBCkFvATjZQmw#P7w##$q5YLt_9wjhn$(gw_n;Oa@rCqyR5s zH>~###-Sl>;|Ywe*w|u7!1E|RW4|f8vVTLkRywp)U>hTo7LT_%E*+WD7pd4obo;gC zqWCjKL51S%NHIUPbP@aoXJh9B-6K~ND{-2uUH!IjGeVPL?cZ<~+`#V&a}kn}vFh=7 z5Hz2#h+r;)=cJ6Q2<9Mo-l(gtPAs~fK(IvfU5f2_6Jh9`t|u6#;9_^f<=;y9Ge6)| zyiW3WfMJy4U@l!1(sbu(oRn||zk77#1)S9IgkLA#spL_EljrnmW)UrpuoNC7izv!i z%?>K5r8PZB<5K!i$3kY967ul`MrUqdIn|9EM@LxBq+m7mh!#y+PrA{D8un2c?m=OM z5k?qcgkc2!4~1b(V9qa(iU0rrC3HntbYx+4WjbSWWnpw>05UK#Gc7PQEigD#Ffuwb zIXW{mD=;uRFfh>cf^Pr-03~!qSaf7zbY(hiZ)9m^c>ppnGBYhOG%YYVR4_6+GdVgl aG%GMLIxsMysXEgD0000E3Bh7v+4Itq- zvc3N*yoJO|CHClW~4z}e@pA^AqUI3-j{yg}Im44E)LJ_}F0m)m!q*^Ql zHi;dVl9mD`^6&-_fXALHDUHYO3?4WAvjq3^3;krY`^L0z@T{U<|C!yv&mFt-QHzh; z`MuM$s_y+4YS^`^=`^ctF6*RQ!4Fb;RR;}Hd<|BVseb`tZaS5qM}$vH@?78=rCg9v zXQK$oo>d18r~B?!C$u|oOM^zDYLDCW=V5H6foG4YKXznlg{gaKGi~b5yb-*~mjHa{ z_ejp=DP>I!TUb>B&oP-H#0>1G4J;w+k=drB+CTd#9ZcC11o+#3#8Vli?-!KQSR^vL(fOS4f$4x;waA-T>m>$`13S}6zXlC`YD z(AV~0r+!4i^HcKDY{_k2@I-F+%n>g=S%bzj>a-%r8fl+DkWMlkI(Ed_1d*3o($l4f z=%ML8%y5&ck@^s-U3FVRH*^8_b$dsoE2aY4>CrYn?pCvc&+t_1M~rJcmauHG4O@`1 z1^4O;M2aLLq3L3)%YnYQRTWZqcbu@;>Jwf1oH()2%vi2dr;fTQu}SKUb{}Iy%rb)H zaRE@jtWQEXq`c-zHoL671jneFHRkj8;I3I7+NdrfFF6VCu!K8NuTl9u;zsT}xiOFP zyQIMJrZproWSEl^DjH-sPQ=)i)!~pGi^ryi3$&MYTJ-PR_|y1Sd>{JJNzAyeDR+83 zdqRKu9DS|i?XM?!1t5EWjavDK-tu-xPJU#Xu20O0Ku~bS&m_!!*07AQuEo_SkQirn z5L9slJU`@oqae56EWeyh=#LkrxLiT4V#@;G{d;`62e@s#zt~&y&O4UAO3Kid(z|`M z>(t~GO^vB-b{_o7+Eo?BF(<>+yE~?RM>Zw1M3gcMxEy)W%X0J}kCAYV-CDWxm%Fa6 z>MqoLKSKd_RrXjYoZ_}8x|DbO%+onXwu95vH{$v|4$CI5LLL>Z9(=pgG$xMl%S^T9 zaA)1#eIV=8i6w3L>T_g$SgxJVL#kGs+rEt!8j)FyM;T||m+Vdz$15=N1G(Hay#+_G zFWz4N{7M}rT`ASJQaly!;JCLKiHVR+)-v)&S;Ng8XnpH9Y#sYNjQ=jgUrHSCbY z76;=bTOxHr1B?|Xc|a}rS(&EEZ@eDPQgIYF~JKN+`W zgnnUkyMqZ?9i`BuKpsr*XDckT?^pB$JW53YWTG^9C3kUa) z8*J#N3#P;t@v*S-#8U&kxGcemy@T27*@#trg)$@Si z3D-Zgspb-k8w21SB`+rNJJEccE4|JsQ5ZtLkbwqA#`IYYCYFpkpA5wCo~6i66csIw zWoq2(LSp@NtDU;==V*EHkA9Am<(IK+YF-w%K~d|{%>2gJrmC;cI-}(FoqR^;p&a6{ zD!H;dr+;XxsU+!CE{c2CV{Z+< z%HV;o-Ixo~4mj+ui?lL>$HfO}d6@1NSg_6t?9ZjZe#jJEKk^n7mhx%Ybx0wf0vpAD zr;q;7vgAO=&@8LqLNO4-h65u&UB525lPt;C_YJl6BVy@+*cmeycZEuR-{U#`bre-*Dw@r|&=r^&+WIcf zQ8e|N-`R$Um)kR?rZsNNK}>u9^~JsyG8hrL6DctBilf!(T8t48tsBMfv}CnMHT`a1 zJ2wsG*sK36H@sJv39$mtW8Hjr6u6$O8wqK0Q@)5_gWP0Hxt428KsoHZR8D}5)f$sV zv~*YSOAc!p@Xx4D2DjBmL1)Tx^9SBH!bn42xh`Ig!XRl|!ouq3<<+JfR#DU4-8*62 z9K|jn>H`ZffjO`tdoH2iTpCwZ(#O?{^;|;z*jv5JRs5Co{i5<&E8{WLm2@NUQ)QDm zo5?67@5)|oe_F3yW65qIeOl>LrL60mHYf1zz6$7v54|%AOiNy*ur2t&lqS(^JHhv> z*axHp{^zQhg~8scBN(Z0ZSJ}NMZcO*Z}VDBW%6~3^+Evl6wrA@uH9R@fLU~nMMrM+ zx(fWOv9u4Zg(SmT)io<$PbOwTW?mTnCOao|x0_RyZt!K&W@E8h1q?Czo>&-*aEZa# zev%b;d`Hfsit;>4*B5f;;V_!lp;$;WJi22)e24Zf3bp>|#g|gyztWJX6W>zX(#fK+ zH@8+rCH9=USm8xN67L)QuYb#YmOPKI78j_W3fEP!JDkdJ$so!u{QJfEN^7k%vI z3y)%dT3%_oz4P+B##^+2p5|O@zIY4n8mrRuKJ*tKdKS;O*LlXMxZ1%>*S*gN-cIw+`2745 zGl}m;ZA&H=biyR`!*DwisxR)3Dh=d$rDeG%{pF0E%3SMWEKJw--p#QGSH{IN4mUs9 zfv33wkniL2`;z$)*Qy!fSJ49jV}e&W4Yr1vLd*@p7f=ciViKstRcQ*lKfXAwj{W}d z4e^dcDeQ6oT%;*$HTRX#LYVPaTm{yy1=Taq>7zoRh||sgJ_~I71e-GhHzwa{+0vW2 zh2>MtgH*>Skx^#Vg)P`qdFR}XP;Dm}3NdGJ#^~;lj*+Qt@ITRQj8DQ(?;l+5c${GF zFR>;mk%-H%4u8tV?<)Nc^)YY;1)2H<_!#D^7P<2^<6wGU+z|CU2H%gQVPH#ffwG?B z6H1%ffl&iU+iUc_zTDB3&=xFmO0#OEw^aUbu%-D|F^d0EvjJ@B%5P7TKF>xz?5iM~ zv)~0&n;h~&sTC)uVeieem%69G@HDr{;(FD22K!it;rk(DC%r_c$$pduc z>Gu_{ZwHEEZky%af&KTQc5D25w2tKB`g~FOKR<+8v@JfG=oRgY@QL(2BtQ?Yr>_Gy z(1Dxa;CcvsQ-r?32{;@9hmU?s4*NfbkT7C^U)=w1cvyoNKQsVHTPK@(E6?Qr0s4OD A8vpsC2>g$K7=8c(VU{>c0JvLx=x2c7L3||0-VFx;NtytVmI(m+2dT7=06>NVz?we* zplARf7gN>gYH>jD2Rhi<0RQF`kM$fx!f_a!t?;UV2)~y4k2Gy>01y+y*jVBdUVo_$ zPk`8}xE z6UehYM_Rcb@^t>!Rdk`?IUtB{kR-fpr*y-opj>DZM&27fdMNGU*5(c82C;11nMFas zn^UOf<};Y6{Z@JZ^X27{8$D&Qd827rZ*@dn5e)pKLRwUc!->SPwK2Z#Ake4=>`1HS zA`Xzf#PJDviPJ8f_JuWALD0x_<9pC;%sTje-WF3v_|>pU(rBp1sVkwU|C;uOu^+i6 zc$hRr@$?qZ5FYl4F(fOT*UutS!uw`HNCGy9lc$*U3=(@*|6oVeOwg9mAv$z`GWxV z9Y%dA8beuCfCPN@ z54|LP`p%S^lW`S-NUJMvd4!Nt)ewt#g)f#~5Y{)kzNH>7y--qyT?y0&IoO-fPL*qD zFMDs#M7rViebH)uA02$gEa|}ILv`w^S&feC-*rKWdiiUqkkInCrgB-y-r}<{DP3Wm zdY?j#Q_&q_Y$Nf_mPLLeirai2Uw*_c$?YzMy>PasC9c6kT*v{U#l$5TcZH6?}06Z$7zBFA66|YSrfFC0KLm=Cwsw@#m{&$IPYBwMZBn1(A*~lR@eq<{V~J#Smr~33 zcH$I%7;h+%+>s`eJ`lK4AE*u*h#czV&#J88gJvnU`fjJw9e)I?YvfGzu1(~~h0=_}Rm?x{vPZc8lBc|yjySR7})f1UJhH{E2 zR1H4DF^>Mz0d!8A38mKn%qUHRQM`_dh`d#L5su``SmGTtm#K_(ItSi$!k$?va;bcH z-C23?_1F_3qOqF`YkbWiqB~A9;zXp_*lS8UHgZlfCN6$(ci}S80mQZs{pTOwy@khK z*7~+@)w@>3`Nd59%gkoYx|bt(cT0DI-&j3KZn*bDut0FXk{xtq;DoH(Nss8EpnwhI z_m$1}(y`SXp{)*4PIsVkoA8}Q-yfWP)CVS+gFnl0Gq#Moll$qJ6tmy&UJ@p(@zaTu z8AR;W_9TP)?b)(#G;|9(&!c|2XgIs53~izcuUMPBvLB;t-oLta^a16X-)QqKuC__! zT!JrKI2;e#CUsxFONzbps} zYRg-*p37=BcMsj6&rQbhE5jbFq5Fd;*80SvqG^#}qUlG0Q&M#Ar-kfX+G)4&TAvvP zs0WN>85(ypbe!V(Pl>StPLq2*2m8t8-;;^|$n)=9GWB$NYs# zok|RkDq2GcQJ(Sp1S6@@dW|1W^DjZ0ryH9iLHNZGk1+A4z~>lvuTu~ubEGB7{;5#Y z4PHEkIb+_WF60UAG(VU_c4$Wfxu7-RL?N-x2oD}#1K2NUP9L=|6s+9H9#Nh{9Mdc@ zPN_9CK`S2AYNWGJ+{d99Ylg|F+|gzm9H+jPc)`Q1pq1{248vGMd%(EAvPI7vLBDJx z)SY9{56BkH_CK*R?beF02P30{^8Om(vWrtL4+TfWlkd=<2j}vRP%X?y4MHZio<>_c zL=7myH&q6sIQ4X_i?Q;F3RFz=)+CkcU{&his0!k;g@K`%*pzt2d|(hNH_%_z`^51*{7-| z8pifPX&DLjbZLWdtK={jO!m+&7Gd(8j!g zFWemUkuBI}D*!{3G+MoQO~Tr?OpT35@}b8^67pNV4sVn0x7Ugl?pn z{$jy>lFg;!@8H5Xvz$lr&tp+rs2^!~Cp4kAiBxuu%ITz8Y(M{b>u|#L!!5ni^(4dW zkgmR{Y)+X>-;PmH`6;=KQ0j}Ld3*ZgbvQym*HNX@on3B~56k*=@k5fzs^a_GWh_UY zFkte68aKTveHEre&pg)G|4)0v4G>qpR)MH~ZwfP`Fgz(gYYS;p)kw@M-5?2G&(kFwP%xrZVV)t#2B2$SP4SRyV1Q@$hXfulppXd zLb{rcT_4A<32(*ko4;10*pv;~FC(ED)C4bvx&2GNgB#LuyCx$Pe2iYw<xh7-Uj=X2 z*@{=Ii%EH&6SQla4}xqNbzvLRLu$-;fdpx@9HskkhaiN5E>rA+5~znH@|k#WkB5>w zp?@^8S`lSNRsLqSWNeQNmNnEtnWKZv3(;Jd` z-Y_&YuN0;ubbL?1L$&=TJ2h2~9w?B9YoeK~8*;(6{w=s4%>EPcHq4EfXErlNkAv7c zLJnp}CJiEl3CD6>V^O*k^7z~{=pPc$E~j;-;-h1?@s4K<@AC8Dgr#rWO_>MOrld2E zIT)^Od$@5zb)O!FMG)`X63zbxeDTQ+!Oy! zboHB2SDDzkL6%L;Oej-6Lmk4P%b6F5Rv4G2C!G{3Aq#`f&O2$qF5$Vyp-JwXv^h0S z!3E_fnsaN?3~8!4+n>>s)7O5P^oIzIYS}V8lrKVMj=7f<75fZ;Gk>kGituIJk=fd) z6uGH})qs7&_XZXnYC(h>g^`yt{WGU7FbiNPn2@_x`-R)C92F#F>^%%tmsbQzsHxFa zeg272MK(GOL(@0fo_H45!tW`#@qHy3<-JHFGDx16hiel@!^IznAN8ABLs`VlKo=oHLVOS+IS`GJAY)KvmalqE5U2=thMibi*K3RvaPU z$~V(i#dEeb6>qclCu?<}Hk5xfkFHC*^WAhG@SYCI%(=X2=T{uAj_*CG-B8(NQO1iw+=9TA){RWry4_*b0I9t!S;DERgR1hiT z000CWfz*Q=>A}tLa0CizjzSvgz~Lx3d~!QI`u_+bql3dk6aRk!orRh{5C9lkC!1C) H|MdR=g?Q|5 literal 0 HcmV?d00001 diff --git a/notes/set/relations.md b/notes/set/relations.md index 7a22f75..b91ded6 100644 --- a/notes/set/relations.md +++ b/notes/set/relations.md @@ -345,6 +345,24 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre END%% +A set $A$ is **single-valued** iff for each $x$ in $\mathop{\text{dom}}A$, there is only one $y$ such that $xAy$. A set $A$ is **single-rooted** iff for each $y \in \mathop{\text{ran}}A$, there is only one $x$ such that $xAy$. + +%%ANKI +Basic +What does it mean for a set $A$ to be "single-valued"? +Back: For each $x \in \mathop{\text{dom}}A$, there exists a unique $y$ such that $xAy$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What does it mean for a set $A$ to be "single-rooted"? +Back: For each $y \in \mathop{\text{ran}}A$, there exists a unique $x$ such that $xRy$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + ## n-ary Relations We define ordered triples as $\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle$. We define ordered quadruples as $\langle x_1, x_2, x_3, x_4 \rangle = \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$. This idea generalizes to $n$-tuples. As a special case, we define the $1$-tuple $\langle x \rangle = x$. @@ -407,6 +425,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre END%% +%%ANKI +Basic +What does it mean for a relation to be on some set $A$? +Back: The components of the relation's members are members of $A$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + %%ANKI Basic A $2$-ary relation on $A$ is a subset of what Cartesian product?