Move lambda calculus notes.

c-declarations
Joshua Potter 2024-05-24 03:39:56 -06:00
parent 8fda87c218
commit 6b26e89d3c
4 changed files with 51 additions and 3 deletions

View File

@ -463,8 +463,8 @@
"_journal/2024-05-22.md": "da0364a086746087236eb8afd5770ca3", "_journal/2024-05-22.md": "da0364a086746087236eb8afd5770ca3",
"_journal/2024-05/2024-05-21.md": "f20e4dd94ea22fcb26049de128bc944e", "_journal/2024-05/2024-05-21.md": "f20e4dd94ea22fcb26049de128bc944e",
"set/algebra.md": "a6877ceca952c417b52ea637716addbf", "set/algebra.md": "a6877ceca952c417b52ea637716addbf",
"programming/λ-Calculus.md": "678d665f0c783a47d33b659a6980804b", "programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
"_journal/2024-05-23.md": "8b614b7fb2ed72a0372756a576238439", "_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
"_journal/2024-05/2024-05-22.md": "5b4473b7c6483f3aa8727ad0a12f0408" "_journal/2024-05/2024-05-22.md": "5b4473b7c6483f3aa8727ad0a12f0408"
}, },
"fields_dict": { "fields_dict": {

View File

@ -0,0 +1,9 @@
---
title: "2024-05-24"
---
- [ ] Anki Flashcards
- [x] KoL
- [ ] Sheet Music (10 min.)
- [ ] Go (1 Life & Death Problem)
- [ ] Korean (Read 1 Story)

View File

@ -9,4 +9,5 @@ title: "2024-05-23"
- [ ] Korean (Read 1 Story) - [ ] Korean (Read 1 Story)
* Watched [Lecture #10 - Sorting & Aggregation Algorithms](https://www.youtube.com/watch?v=CMzf9Az1vl4) on databases. * Watched [Lecture #10 - Sorting & Aggregation Algorithms](https://www.youtube.com/watch?v=CMzf9Az1vl4) on databases.
* Work through chapter 1 of "Lambda-Calculus and Combinators, an Introduction". * Work through chapter 1 of "Lambda-Calculus and Combinators, an Introduction".
* Briefly played around further with different Flutter constructs.

View File

@ -189,6 +189,44 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
<!--ID: 1716494526352--> <!--ID: 1716494526352-->
END%% END%%
%%ANKI
Basic
How is a constant function returning $y$ denoted in $\lambda$-calculus?
Back: $\lambda x. y$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716498992500-->
END%%
%%ANKI
Basic
How is expression $MNPQ$ written with parentheses reintroduced?
Back: $(((MN)P)Q)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716498992520-->
END%%
%%ANKI
Cloze
By convention, parentheses in $\lambda$-calculus are {left}-associative.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716498992525-->
END%%
%%ANKI
Basic
How is expression $\lambda x. \lambda y. MN$ written with parentheses reintroduced?
Back: $(\lambda x. (\lambda y. (MN)))$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716498992530-->
END%%
%%ANKI
Cloze
Expression $(MN)$ is interpreted as applying {$M$} to {$N$}.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1716498992534-->
END%%
## Bibliography ## Bibliography
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). * Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).