Move lambda calculus notes.
parent
8fda87c218
commit
6b26e89d3c
|
@ -463,8 +463,8 @@
|
||||||
"_journal/2024-05-22.md": "da0364a086746087236eb8afd5770ca3",
|
"_journal/2024-05-22.md": "da0364a086746087236eb8afd5770ca3",
|
||||||
"_journal/2024-05/2024-05-21.md": "f20e4dd94ea22fcb26049de128bc944e",
|
"_journal/2024-05/2024-05-21.md": "f20e4dd94ea22fcb26049de128bc944e",
|
||||||
"set/algebra.md": "a6877ceca952c417b52ea637716addbf",
|
"set/algebra.md": "a6877ceca952c417b52ea637716addbf",
|
||||||
"programming/λ-Calculus.md": "678d665f0c783a47d33b659a6980804b",
|
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
|
||||||
"_journal/2024-05-23.md": "8b614b7fb2ed72a0372756a576238439",
|
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
|
||||||
"_journal/2024-05/2024-05-22.md": "5b4473b7c6483f3aa8727ad0a12f0408"
|
"_journal/2024-05/2024-05-22.md": "5b4473b7c6483f3aa8727ad0a12f0408"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-05-24"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [ ] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Go (1 Life & Death Problem)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -10,3 +10,4 @@ title: "2024-05-23"
|
||||||
|
|
||||||
* Watched [Lecture #10 - Sorting & Aggregation Algorithms](https://www.youtube.com/watch?v=CMzf9Az1vl4) on databases.
|
* Watched [Lecture #10 - Sorting & Aggregation Algorithms](https://www.youtube.com/watch?v=CMzf9Az1vl4) on databases.
|
||||||
* Work through chapter 1 of "Lambda-Calculus and Combinators, an Introduction".
|
* Work through chapter 1 of "Lambda-Calculus and Combinators, an Introduction".
|
||||||
|
* Briefly played around further with different Flutter constructs.
|
|
@ -189,6 +189,44 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
|
||||||
<!--ID: 1716494526352-->
|
<!--ID: 1716494526352-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is a constant function returning $y$ denoted in $\lambda$-calculus?
|
||||||
|
Back: $\lambda x. y$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716498992500-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is expression $MNPQ$ written with parentheses reintroduced?
|
||||||
|
Back: $(((MN)P)Q)$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716498992520-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
By convention, parentheses in $\lambda$-calculus are {left}-associative.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716498992525-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is expression $\lambda x. \lambda y. MN$ written with parentheses reintroduced?
|
||||||
|
Back: $(\lambda x. (\lambda y. (MN)))$
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716498992530-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Expression $(MN)$ is interpreted as applying {$M$} to {$N$}.
|
||||||
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
|
<!--ID: 1716498992534-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Loading…
Reference in New Issue