Add details on insertion sort.

pull/2/head
Joshua Potter 2024-02-02 19:34:38 -07:00
parent 21517314a4
commit 48766eccb0
3 changed files with 109 additions and 17 deletions

View File

@ -75,8 +75,8 @@
"nix/index.md": "dd5ddd19e95d9bdbe020c68974d77a33",
"journal/2024-02-02.md": "e2acbe75752d9c39875553223e34fb0d",
"bash/prompts.md": "64bd3cd3c2feb9edb68ad8dc5ba65a35",
"algorithms/sorting/index.md": "9aedfae96c9bb86fcba6afd2800538ae",
"algorithms/sorting/insertion-sort.md": "0bdccffe868d40986aa7d0d49da918f3",
"algorithms/sorting/index.md": "cd189e1a2cf32b5656b16aaf9f488874",
"algorithms/sorting/insertion-sort.md": "c78c9983f87cdc4198f82803d418967f",
"algorithms/index.md": "1583c07edea4736db27c38fe2b6c4c31"
},
"fields_dict": {

View File

@ -11,6 +11,21 @@ tags:
Let $n \geq 0$ and $S = \langle a_1, a_2, \ldots, a_n \rangle$ be a sequence. The **sorting problem** refers to permuting **keys** $a_1, a_2, \ldots, a_n$ into a new sequence $\langle a_1', a_2', \ldots, a_n' \rangle$ such that $a_1' \leq a_2' \leq \cdots \leq a_n'$.
%%ANKI
Basic
What makes a sorting algorithm stable?
Back: "Equal" values are ordered the same in the output as they are in the input.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706925787139-->
END%%
%%ANKI
Basic
What is an in place sorting algorithm?
Back: One in which only a constant number of input values are ever stored outside the array.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706925787146-->
END%%
## Structural Comparison
The #Elixir documentation makes a point that there exist two types of comparisons between data types.[^structural] The first is **structural** in which comparisons are made on the underlying data structures used to describe the data types. The second is **semantic** which focuses on making the comparison with respect to what the data types represent.

View File

@ -9,24 +9,85 @@ tags:
## Overview
| Property | Value |
| ------------- | ---------- |
| Best Case ||
| Worst Case ||
| Average Case ||
| Memory ||
| In place ||
| Stable ||
| Property | Value |
| ---------- | -------- |
| Best Case | $O(n)$ |
| Worst Case | $O(n^2)$ |
| Avg. Case | $O(n^2)$ |
| Memory | $O(1)$ |
| In place | Yes |
| Stable | Yes |
Insertion sort works by advancing an index `i` through an array `A[1..n]` such that `A[1..i]` is put into sorted order. Consider precondition `Q` and postcondition `R`:
Insertion sort works by advancing an index `i` through an array `A[1..n]` such that `A[1..i]` is kept in sorted order.
* `Q`: `i = 1`
* `R`: `i = n` and `A[1..n]` is in sorted order
%%ANKI
Basic
What is insertion sort's best case runtime?
Back: $O(n)$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706925879541-->
END%%
Next establish loop invariant `P` and bounds function `t`:
%%ANKI
Basic
What input value does insertion sort perform best on?
Back: An already sorted array.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706925921544-->
END%%
* `P`: `1 \leq i \leq n` and `A[1..i]` is in sorted order
* `t`: the number of inversions of `A[1..i]`
%%ANKI
Basic
What is insertion sort's worst case runtime?
Back: $O(n^2)$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586947-->
END%%
%%ANKI
Basic
What input value does insertion sort perform worst on?
Back: An array in reverse-sorted order.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586951-->
END%%
%%ANKI
Basic
Is insertion sort in place?
Back: Yes
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586955-->
END%%
%%ANKI
Basic
Is insertion sort stable?
Back: Yes
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586959-->
END%%
```c
void insertion_sort(const int n, int A[static n]) {
for (int i = 1; i < n; ++i) {
int key = A[i];
int j = i - 1;
for (; j >= 0 && A[j] > key; --j) {
A[j + 1] = A[j];
}
A[j + 1] = key;
}
}
```
%%ANKI
Basic
What loop invariant is maintained in insertion sort?
Back: `A[1..i]` is in sorted order.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706927594718-->
END%%
## Analogy
@ -34,6 +95,22 @@ Suppose you have a shuffled deck of playing cards face-down on a table. Start by
If you repeat this process for every card in the deck, your left hand will eventually contain the entire deck in sorted order.
%%ANKI
Basic
What analogy does Cormen et al. use to explain insertion sort?
Back: Sorting a shuffled deck of playing cards.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706927594729-->
END%%
%%ANKI
Basic
What invariant does the left hand maintain in Cormen et al.'s insertion sort analogy?
Back: It contains all drawn cards in sorted order.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706927594732-->
END%%
## References
* Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).
* Thomas H. Cormen et al., _Introduction to Algorithms_, 3rd ed (Cambridge, Mass: MIT Press, 2009).