More algebra of set identities and truth table analogs.
parent
e87168b297
commit
47519891a4
|
@ -172,7 +172,7 @@
|
|||
"_journal/2024-02-02.md": "a3b222daee8a50bce4cbac699efc7180",
|
||||
"_journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb",
|
||||
"_journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970",
|
||||
"logic/equiv-trans.md": "454cfcfac3a220868b3e7c4a4fd9462c",
|
||||
"logic/equiv-trans.md": "45215c676406f1201c23e1c34c01c67f",
|
||||
"_journal/2024-02-07.md": "8d81cd56a3b33883a7706d32e77b5889",
|
||||
"algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2",
|
||||
"algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9",
|
||||
|
@ -208,7 +208,7 @@
|
|||
"encoding/ascii.md": "34350e7b5a4109bcd21f9f411fda0dbe",
|
||||
"encoding/index.md": "071cfa6a5152efeda127b684f420d438",
|
||||
"c/strings.md": "aba6e449906d05aee98e3e536eb43742",
|
||||
"logic/truth-tables.md": "3587646293a1f6646ed65541bc0a26f4",
|
||||
"logic/truth-tables.md": "b00bf6d31f34bc2cae692642f823c8e1",
|
||||
"logic/short-circuit.md": "a3fb33603a38a6d3b268556dcbdfa797",
|
||||
"logic/boolean-algebra.md": "56d2e0be2853d49b5dface7fa2d785a9",
|
||||
"_journal/2024-02-13.md": "6242ed4fecabf95df6b45d892fee8eb0",
|
||||
|
@ -224,7 +224,7 @@
|
|||
"algebra/index.md": "90b842eb694938d87c7c68779a5cacd1",
|
||||
"algorithms/binary-search.md": "8533a05ea372e007ab4e8a36fd2772a9",
|
||||
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||
"_journal/2024-02/2024-02-16.md": "e701902e369ec53098fc2deed4ec14fd",
|
||||
"_journal/2024-02/2024-02-16.md": "5cb83519ac99618514b7fb638b46187d",
|
||||
"binary/integer-encoding.md": "7ace6ab6c5a4191ae0abdfe7e5abb6a2",
|
||||
"combinatorics/index.md": "66efa649c4c87e58fc82c2199096ade4",
|
||||
"_journal/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
||||
|
@ -273,7 +273,7 @@
|
|||
"algebra/sequences/index.md": "2385d1db23c1753f9dc744029c357283",
|
||||
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
|
||||
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
|
||||
"algebra/sequences/triangular-numbers.md": "39a84ee317d3760a2eda7279c83e921a",
|
||||
"algebra/sequences/triangular-numbers.md": "1ae6730fa64bbb44d1d51a899f047584",
|
||||
"algebra/sequences/square-numbers.md": "171f7c5a8dac088afba40923ab86c68e",
|
||||
"_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670",
|
||||
"_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2",
|
||||
|
@ -373,7 +373,7 @@
|
|||
"_journal/2024-04-16.md": "0bf6e2f2a3afab73d528cee88c4c1a92",
|
||||
"_journal/2024-04/2024-04-15.md": "256253b0633d878ca58060162beb7587",
|
||||
"algebra/polynomials.md": "6e20029b44fe0d0c4f35ef8ee4874d82",
|
||||
"algebra/sequences/delta-constant.md": "70ceb29a3ec0ebe2b58af20107a5a2d3",
|
||||
"algebra/sequences/delta-constant.md": "70f45d7b8d5c3a147fabc279105c4983",
|
||||
"_journal/2024-04-19.md": "a293087860a7f378507a96df0b09dd2b",
|
||||
"_journal/2024-04/2024-04-18.md": "f6e5bee68dbef90a21ca92a846930a88",
|
||||
"_journal/2024-04/2024-04-17.md": "331423470ea83fc990c1ee1d5bd3b3f1",
|
||||
|
@ -462,16 +462,20 @@
|
|||
"_journal/2024-05/2024-05-20.md": "d58a4ecd3bf9621cbe688f043be61239",
|
||||
"_journal/2024-05-22.md": "da0364a086746087236eb8afd5770ca3",
|
||||
"_journal/2024-05/2024-05-21.md": "f20e4dd94ea22fcb26049de128bc944e",
|
||||
"set/algebra.md": "a6877ceca952c417b52ea637716addbf",
|
||||
"set/algebra.md": "d7b4c7943f3674bb152389f4bef1a234",
|
||||
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
|
||||
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
|
||||
"_journal/2024-05/2024-05-22.md": "5b4473b7c6483f3aa8727ad0a12f0408",
|
||||
"_journal/2024-05/2024-05-22.md": "3c29eec25f640183b0be365e7a023750",
|
||||
"programming/lambda-calculus.md": "6930e7031babe1fb5a2dec9cc3bedcac",
|
||||
"_journal/2024-05-25.md": "04e8e1cf4bfdbfb286effed40b09c900",
|
||||
"_journal/2024-05/2024-05-24.md": "86132f18c7a27ebc7a3e4a07f4867858",
|
||||
"_journal/2024-05/2024-05-23.md": "d0c98b484b1def3a9fd7262dcf2050ad",
|
||||
"_journal/2024-05-26.md": "3b95f86726d646f157ebe2ae55e2afda",
|
||||
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869"
|
||||
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
|
||||
"_journal/2024-05-27.md": "825a4bc24833f955581fb5949ec79a4e",
|
||||
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
||||
"algebra/set.md": "d7b4c7943f3674bb152389f4bef1a234",
|
||||
"algebra/boolean.md": "56d2e0be2853d49b5dface7fa2d785a9"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -12,4 +12,4 @@ title: "2024-02-16"
|
|||
|
||||
* Read "Queries, Modeling, and Transformation" of "Fundamentals of Data Engineering".
|
||||
* Deleted many notes on shifting. Will wait until I look deeper into the actual representations of integral types before re-introducing.
|
||||
* Spent time deriving properties of floor/ceiling functions and analogues in C. Added many more notes on partitioning arrays in halves.
|
||||
* Spent time deriving properties of floor/ceiling functions and analogs in C. Added many more notes on partitioning arrays in halves.
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-05-27"
|
||||
---
|
||||
|
||||
- [ ] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* More algebra of sets identities and analogs between membership tables and truth tables.
|
|
@ -9,6 +9,6 @@ title: "2024-05-22"
|
|||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Read "Chapter 8. The Trouble with Distributed Systems" in "Designing Data-Intensive Applications".
|
||||
* Begin taking notes/creating flashcards on the [[algebra|algebra of sets]].
|
||||
* Begin taking notes/creating flashcards on the [[set|algebra of sets]].
|
||||
* Additional flashcards on git branching.
|
||||
* Slight progress on Hide and Seek flutter app.
|
|
@ -18,7 +18,7 @@ A sequence is said to be **$\Delta^k$-constant** if the $k$th differences are co
|
|||
|
||||
> The closed formula for a sequence will be a degree $k$ polynomial if and only if the sequence is $\Delta^k$-constant.
|
||||
|
||||
This is the discrete analogue to (continuous) derivatives of polynomials.
|
||||
This is the discrete analog to (continuous) derivatives of polynomials.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
|
@ -77,7 +77,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
$\Delta^k$-constant sequences are a discrete analogue to what calculus concept?
|
||||
$\Delta^k$-constant sequences are a discrete analog to what calculus concept?
|
||||
Back: Derivatives.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
Tags: calculus
|
||||
|
|
|
@ -125,7 +125,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What polygonal sequence is the summation analogue of factorial?
|
||||
What polygonal sequence is the summation analog of factorial?
|
||||
Back: The triangular numbers.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325918-->
|
||||
|
|
|
@ -115,6 +115,79 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716396060625-->
|
||||
END%%
|
||||
|
||||
### Distributive Laws
|
||||
|
||||
For any sets $A$, $B$, and $C$, $$\begin{align*} A \cap (B \cup C) & = (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) & = (A \cup B) \cap (A \cup C) \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The distributive laws of the algebra of sets apply to what operators?
|
||||
Back: $\cup$ and $\cap$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270441-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The distributive law states {$A \cap (B \cup C)$} $=$ {$(A \cap B) \cup (A \cap C)$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270447-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The distributive law states {$A \cup (B \cap C)$} $=$ {$(A \cup B) \cap (A \cup C)$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270452-->
|
||||
END%%
|
||||
|
||||
### De Morgan's Laws
|
||||
|
||||
For any sets $A$, $B$, and $C$, $$\begin{align*} C - (A \cup B) & = (C - A) \cap (C - B) \\ C - (A \cap B) & = (C - A) \cup (C - B) \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The De Morgan's laws of the algebra of sets apply to what operators?
|
||||
Back: $\cup$, $\cap$, and $-$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270457-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
De Morgan's law states that {$C - (A \cup B)$} $=$ {$(C - A) \cap (C - B)$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270461-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
De Morgan's law states that {$C - (A \cap B)$} $=$ {$(C - A) \cup (C - B)$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270466-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For their respective De Morgan's laws, {$-$} is to the algebra of sets whereas {$\neg$} is to boolean algebra.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270473-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For their respective De Morgan's laws, {$\cup$} is to the algebra of sets whereas {$\lor$} is to boolean algebra.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270480-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
For their respective De Morgan's laws, {$\cap$} is to the algebra of sets whereas {$\land$} is to boolean algebra.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803270485-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -367,7 +367,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
How is e.g. the Law of Implication proven in the system of evaluation?
|
||||
Back: With truth tables
|
||||
Back: With truth tables.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707316178714-->
|
||||
END%%
|
||||
|
|
|
@ -87,6 +87,38 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
|
|||
<!--ID: 1707311869003-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What analog to truth tables is found in the algebra of sets?
|
||||
Back: Membership tables.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803633023-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{Truth} tables are to propositions whereas {membership} tables are to set identities.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803633029-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many rows are in the truth table of identity $\neg (a \Rightarrow b) \Leftrightarrow c$?
|
||||
Back: $2^3 = 8$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716803798112-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many rows are in the membership table of identity $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?
|
||||
Back: $2^3 = 8$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716803798123-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Loading…
Reference in New Issue