The Schröder-Bernstein Theorem.
parent
69496fe3d3
commit
3dbe49bb1b
|
@ -80,7 +80,35 @@
|
|||
"calculus": "",
|
||||
"_journal/2024-09": "",
|
||||
"c17/types": "",
|
||||
"calculus/images": ""
|
||||
"calculus/images": "",
|
||||
"combinators": "",
|
||||
"computability": "",
|
||||
"data-models": "",
|
||||
"geometry": "",
|
||||
"linkers": "",
|
||||
"serialization": "",
|
||||
"threads": "",
|
||||
"_journal/2024": "",
|
||||
"_journal/2025-01": "",
|
||||
"c17/strings": "",
|
||||
"computability/images": "",
|
||||
"data-models/rdf": "",
|
||||
"geometry/images": "",
|
||||
"linkers/images": "",
|
||||
"programming/images": "",
|
||||
"x86-64/images": "",
|
||||
"_journal/2024/2024-01": "",
|
||||
"_journal/2024/2024-02": "",
|
||||
"_journal/2024/2024-03": "",
|
||||
"_journal/2024/2024-04": "",
|
||||
"_journal/2024/2024-05": "",
|
||||
"_journal/2024/2024-06": "",
|
||||
"_journal/2024/2024-07": "",
|
||||
"_journal/2024/2024-08": "",
|
||||
"_journal/2024/2024-09": "",
|
||||
"_journal/2024/2024-10": "",
|
||||
"_journal/2024/2024-11": "",
|
||||
"_journal/2024/2024-12": ""
|
||||
},
|
||||
"FOLDER_TAGS": {
|
||||
"algorithms": "",
|
||||
|
@ -142,7 +170,35 @@
|
|||
"calculus": "",
|
||||
"_journal/2024-09": "",
|
||||
"c17/types": "",
|
||||
"calculus/images": ""
|
||||
"calculus/images": "",
|
||||
"combinators": "",
|
||||
"computability": "",
|
||||
"data-models": "",
|
||||
"geometry": "",
|
||||
"linkers": "",
|
||||
"serialization": "",
|
||||
"threads": "",
|
||||
"_journal/2024": "",
|
||||
"_journal/2025-01": "",
|
||||
"c17/strings": "",
|
||||
"computability/images": "",
|
||||
"data-models/rdf": "",
|
||||
"geometry/images": "",
|
||||
"linkers/images": "",
|
||||
"programming/images": "",
|
||||
"x86-64/images": "",
|
||||
"_journal/2024/2024-01": "",
|
||||
"_journal/2024/2024-02": "",
|
||||
"_journal/2024/2024-03": "",
|
||||
"_journal/2024/2024-04": "",
|
||||
"_journal/2024/2024-05": "",
|
||||
"_journal/2024/2024-06": "",
|
||||
"_journal/2024/2024-07": "",
|
||||
"_journal/2024/2024-08": "",
|
||||
"_journal/2024/2024-09": "",
|
||||
"_journal/2024/2024-10": "",
|
||||
"_journal/2024/2024-11": "",
|
||||
"_journal/2024/2024-12": ""
|
||||
},
|
||||
"Syntax": {
|
||||
"Begin Note": "%%ANKI",
|
||||
|
@ -170,81 +226,7 @@
|
|||
"**/*.excalidraw.md"
|
||||
]
|
||||
},
|
||||
"Added Media": [
|
||||
"adj-list-representation.png",
|
||||
"adj-matrix-representation.png",
|
||||
"abs-value-geom.png",
|
||||
"triangle-inequality.png",
|
||||
"triangle-inequality-degenerate.png",
|
||||
"venn-diagram-union.png",
|
||||
"venn-diagram-abs-comp.png",
|
||||
"venn-diagram-intersection.png",
|
||||
"venn-diagram-rel-comp.png",
|
||||
"venn-diagram-symm-diff.png",
|
||||
"normalized-form.png",
|
||||
"denormalized-form.png",
|
||||
"infinity.png",
|
||||
"nan.png",
|
||||
"triangular-gnomon.png",
|
||||
"pascals-triangle.png",
|
||||
"function-bijective.png",
|
||||
"function-injective.png",
|
||||
"function-surjective.png",
|
||||
"function-general.png",
|
||||
"function-kernel.png",
|
||||
"peano-system-i.png",
|
||||
"peano-system-ii.png",
|
||||
"relation-ordering-example.png",
|
||||
"archimedean-property.png",
|
||||
"church-rosser.png",
|
||||
"directed-graph-example.png",
|
||||
"undirected-graph-example.png",
|
||||
"cyclic-undirected-labelled.png",
|
||||
"graph-isomorphic.png",
|
||||
"graph-induced-subgraph.png",
|
||||
"graph-subgraph.png",
|
||||
"graph-non-subgraph.png",
|
||||
"bfs.gif",
|
||||
"closed-addressing.png",
|
||||
"open-addressing.png",
|
||||
"theta-notation.png",
|
||||
"big-o-notation.png",
|
||||
"big-omega-notation.png",
|
||||
"b-tree-full-node.png",
|
||||
"b-tree-split-node.png",
|
||||
"b-tree-initial.png",
|
||||
"b-tree-inserted-b.png",
|
||||
"b-tree-inserted-q.png",
|
||||
"dfs.gif",
|
||||
"saved-registers.png",
|
||||
"local-variables.png",
|
||||
"arg-build-area.png",
|
||||
"stack-frame.png",
|
||||
"buffer-overflow.png",
|
||||
"infinite-cartesian-product.png",
|
||||
"postage-function.png",
|
||||
"free-tree.png",
|
||||
"forest.png",
|
||||
"cyclic-undirected.png",
|
||||
"rooted-tree.png",
|
||||
"ordered-rooted-tree-cmp.png",
|
||||
"ordered-binary-tree-cmp.png",
|
||||
"lcrs-nodes.png",
|
||||
"binary-tree-nodes.png",
|
||||
"abs-right.png",
|
||||
"abs-left.png",
|
||||
"abs-up.png",
|
||||
"abs-down.png",
|
||||
"abs-right-down.png",
|
||||
"abs-left-down.png",
|
||||
"triple-table-repr.png",
|
||||
"state-diagram.png",
|
||||
"state-diagram-ends1.png",
|
||||
"state-diagram-ends0.png",
|
||||
"dfs-edge-classification.png",
|
||||
"complex-plane-point.png",
|
||||
"iterative-command.png"
|
||||
],
|
||||
"Added Media": [],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
"algorithms/sorting/index.md": "4a66e28bce754de5df31ec2f4aed7e93",
|
||||
|
@ -972,7 +954,7 @@
|
|||
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
|
||||
"set/cardinality.md": "02191c855899826b9e379adfa1e9b98e",
|
||||
"set/cardinality.md": "a684ba2638e90d6d5647054230b3f35f",
|
||||
"geometry/area.md": "7f947bb5ac782495a1fb4a63bb2463e7",
|
||||
"_journal/2024-11-23.md": "911f82ab8aede5ecdb96493aef64b0b9",
|
||||
"_journal/2024-11/2024-11-22.md": "51117030e2364dbce3a8d507dead86ae",
|
||||
|
|
|
@ -7,3 +7,5 @@ title: "2025-01-12"
|
|||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on the [[cardinality#Schröder-Bernstein Theorem|Schröder-Bernstein Theorem]].
|
|
@ -1236,7 +1236,7 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1735074143712-->
|
||||
END%%
|
||||
|
||||
### Ordering
|
||||
## Ordering
|
||||
|
||||
A set $A$ is **dominated** by a set $B$, written $A \preceq B$, if and only if there is a one-to-one function from $A$ into $B$. In other words, $A \preceq B$ if and only if $A$ is equinumerous to some subset of $B$. Then $$\mathop{\text{card}}A \leq \mathop{\text{card}}B \text{ if and only if } A \preceq B.$$
|
||||
|
||||
|
@ -1520,6 +1520,174 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1736702905267-->
|
||||
END%%
|
||||
|
||||
### Schröder-Bernstein Theorem
|
||||
|
||||
For any sets $A$ and $B$, if $A \preceq B$ and $B \preceq A$, then $A \approx B$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In terms of sets, what does the Schröder-Bernstein theorem state?
|
||||
Back: For any sets $A$ and $B$, if $A \preceq B$ and $B \preceq A$, then $A \approx B$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693540-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In terms of cardinal numbers, what does the Schröder-Bernstein theorem state?
|
||||
Back: For any cardinal numbers $\kappa$ and $\lambda$, if $\kappa \leq \lambda$ and $\lambda \leq \kappa$, then $\kappa = \lambda$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693542-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\kappa$ and $\lambda$ be cardinals numbers. What name is given to the following conditional? $$\kappa \leq \lambda \land \lambda \leq \kappa \Rightarrow \kappa = \lambda$$
|
||||
Back: The Schröder-Bernstein theorem.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693543-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $A$ and $B$ be sets. What name is given to the following conditional? $$A \preceq B \land B \preceq A \Rightarrow A \approx B$$
|
||||
Back: The Schröder-Bernstein theorem.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693544-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following is a visual depiction of what theorem?
|
||||
![[schroder-bernstein.png]]
|
||||
Back: The Schröder-Bernstein theorem.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693545-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider injections $f \colon A \rightarrow B$ and $g \colon B \rightarrow A$. What set is "reflected" in the proof of the Schröder-Bernstein theorem?
|
||||
Back: $A - \mathop{\text{ran}}g$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693546-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The proof of the Schröder-Bernstein theorem uses concepts from what "paradox"?
|
||||
Back: Hilbert's paradox of the Grand Hotel.
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693547-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider this visual proof of the Schröder-Bernstein theorem. The first yellow segment corresponds to what set?
|
||||
![[schroder-bernstein.png]]
|
||||
Back: $A - \mathop{\text{ran}}g$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693548-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider this visual proof of the Schröder-Bernstein theorem. The second yellow segment corresponds to what set?
|
||||
![[schroder-bernstein.png]]
|
||||
Back: $g[\![f[\![A - \mathop{\text{ran}}g]\!]]\!]$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693549-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Consider injections $f \colon A \rightarrow B$ and $g \colon B \rightarrow A$. Then $h \colon A \rightarrow B$ is a bijection where:
|
||||
* {$C_0$} $=$ {$A - \mathop{\text{ran} }g$} and {$C_{n^+}$} $=$ {$g[\![f[\![C_n]\!]]\!]$};
|
||||
* $h(x) =$ {$f(x)$} if {$x \in \bigcup_{n} C_n$};
|
||||
* $h(x) =$ {$g^{-1}(x)$} otherwise.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1736711693550-->
|
||||
END%%
|
||||
|
||||
## Hilbert's Hotel
|
||||
|
||||
Consider a hypothetical hotel with rooms numbered $1$, $2$, $3$, and so on with no upper limit. That is, there is a countably infinite number of rooms in this hotel. Furthermore, it's assumed every room is occupied.
|
||||
|
||||
Hilbert's hotel shows that any finite or countably infinite number of additional guests can still be accommodated for.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many rooms exist in Hilbert's Hotel?
|
||||
Back: A countably infinite number.
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693551-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does Hilbert's Hotel assume about every one of its rooms?
|
||||
Back: That they are occupied.
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693552-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many rooms are there assumed to be in Hilbert's Hotel?
|
||||
Back: A countably infinite number of them, i.e. $\omega$.
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693553-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Add one guest to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
|
||||
Back: $n + 1$
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693554-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Add $k \in \mathbb{N}$ guests to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
|
||||
Back: $n + k$
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693555-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Add a countably infinite number of guests to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
|
||||
Back: $2n$
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693556-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Add a countably infinite number of guests to Hilbert's Hotel. Moving occupant of room $n$ to room $2n$ makes which rooms available?
|
||||
Back: All odd-numbered rooms.
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693557-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What "paradox" does Hilbert's Hotel raise?
|
||||
Back: A fully occupied hotel can still make room for more guests.
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693558-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Hilbert's paradox of the Grand Hotel illustates the existence of what mathematical entity?
|
||||
Back: A bijection between any countably infinite set and $\mathbb{N}$.
|
||||
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
||||
<!--ID: 1736711693559-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
* “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
|
Binary file not shown.
After Width: | Height: | Size: 37 KiB |
Loading…
Reference in New Issue