The Schröder-Bernstein Theorem.

main
Joshua Potter 2025-01-12 13:00:32 -07:00
parent 69496fe3d3
commit 3dbe49bb1b
4 changed files with 233 additions and 81 deletions

View File

@ -80,7 +80,35 @@
"calculus": "",
"_journal/2024-09": "",
"c17/types": "",
"calculus/images": ""
"calculus/images": "",
"combinators": "",
"computability": "",
"data-models": "",
"geometry": "",
"linkers": "",
"serialization": "",
"threads": "",
"_journal/2024": "",
"_journal/2025-01": "",
"c17/strings": "",
"computability/images": "",
"data-models/rdf": "",
"geometry/images": "",
"linkers/images": "",
"programming/images": "",
"x86-64/images": "",
"_journal/2024/2024-01": "",
"_journal/2024/2024-02": "",
"_journal/2024/2024-03": "",
"_journal/2024/2024-04": "",
"_journal/2024/2024-05": "",
"_journal/2024/2024-06": "",
"_journal/2024/2024-07": "",
"_journal/2024/2024-08": "",
"_journal/2024/2024-09": "",
"_journal/2024/2024-10": "",
"_journal/2024/2024-11": "",
"_journal/2024/2024-12": ""
},
"FOLDER_TAGS": {
"algorithms": "",
@ -142,7 +170,35 @@
"calculus": "",
"_journal/2024-09": "",
"c17/types": "",
"calculus/images": ""
"calculus/images": "",
"combinators": "",
"computability": "",
"data-models": "",
"geometry": "",
"linkers": "",
"serialization": "",
"threads": "",
"_journal/2024": "",
"_journal/2025-01": "",
"c17/strings": "",
"computability/images": "",
"data-models/rdf": "",
"geometry/images": "",
"linkers/images": "",
"programming/images": "",
"x86-64/images": "",
"_journal/2024/2024-01": "",
"_journal/2024/2024-02": "",
"_journal/2024/2024-03": "",
"_journal/2024/2024-04": "",
"_journal/2024/2024-05": "",
"_journal/2024/2024-06": "",
"_journal/2024/2024-07": "",
"_journal/2024/2024-08": "",
"_journal/2024/2024-09": "",
"_journal/2024/2024-10": "",
"_journal/2024/2024-11": "",
"_journal/2024/2024-12": ""
},
"Syntax": {
"Begin Note": "%%ANKI",
@ -170,81 +226,7 @@
"**/*.excalidraw.md"
]
},
"Added Media": [
"adj-list-representation.png",
"adj-matrix-representation.png",
"abs-value-geom.png",
"triangle-inequality.png",
"triangle-inequality-degenerate.png",
"venn-diagram-union.png",
"venn-diagram-abs-comp.png",
"venn-diagram-intersection.png",
"venn-diagram-rel-comp.png",
"venn-diagram-symm-diff.png",
"normalized-form.png",
"denormalized-form.png",
"infinity.png",
"nan.png",
"triangular-gnomon.png",
"pascals-triangle.png",
"function-bijective.png",
"function-injective.png",
"function-surjective.png",
"function-general.png",
"function-kernel.png",
"peano-system-i.png",
"peano-system-ii.png",
"relation-ordering-example.png",
"archimedean-property.png",
"church-rosser.png",
"directed-graph-example.png",
"undirected-graph-example.png",
"cyclic-undirected-labelled.png",
"graph-isomorphic.png",
"graph-induced-subgraph.png",
"graph-subgraph.png",
"graph-non-subgraph.png",
"bfs.gif",
"closed-addressing.png",
"open-addressing.png",
"theta-notation.png",
"big-o-notation.png",
"big-omega-notation.png",
"b-tree-full-node.png",
"b-tree-split-node.png",
"b-tree-initial.png",
"b-tree-inserted-b.png",
"b-tree-inserted-q.png",
"dfs.gif",
"saved-registers.png",
"local-variables.png",
"arg-build-area.png",
"stack-frame.png",
"buffer-overflow.png",
"infinite-cartesian-product.png",
"postage-function.png",
"free-tree.png",
"forest.png",
"cyclic-undirected.png",
"rooted-tree.png",
"ordered-rooted-tree-cmp.png",
"ordered-binary-tree-cmp.png",
"lcrs-nodes.png",
"binary-tree-nodes.png",
"abs-right.png",
"abs-left.png",
"abs-up.png",
"abs-down.png",
"abs-right-down.png",
"abs-left-down.png",
"triple-table-repr.png",
"state-diagram.png",
"state-diagram-ends1.png",
"state-diagram-ends0.png",
"dfs-edge-classification.png",
"complex-plane-point.png",
"iterative-command.png"
],
"Added Media": [],
"File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
"algorithms/sorting/index.md": "4a66e28bce754de5df31ec2f4aed7e93",
@ -972,7 +954,7 @@
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
"set/cardinality.md": "02191c855899826b9e379adfa1e9b98e",
"set/cardinality.md": "a684ba2638e90d6d5647054230b3f35f",
"geometry/area.md": "7f947bb5ac782495a1fb4a63bb2463e7",
"_journal/2024-11-23.md": "911f82ab8aede5ecdb96493aef64b0b9",
"_journal/2024-11/2024-11-22.md": "51117030e2364dbce3a8d507dead86ae",

View File

@ -7,3 +7,5 @@ title: "2025-01-12"
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Notes on the [[cardinality#Schröder-Bernstein Theorem|Schröder-Bernstein Theorem]].

View File

@ -1236,7 +1236,7 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1735074143712-->
END%%
### Ordering
## Ordering
A set $A$ is **dominated** by a set $B$, written $A \preceq B$, if and only if there is a one-to-one function from $A$ into $B$. In other words, $A \preceq B$ if and only if $A$ is equinumerous to some subset of $B$. Then $$\mathop{\text{card}}A \leq \mathop{\text{card}}B \text{ if and only if } A \preceq B.$$
@ -1520,6 +1520,174 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1736702905267-->
END%%
### Schröder-Bernstein Theorem
For any sets $A$ and $B$, if $A \preceq B$ and $B \preceq A$, then $A \approx B$.
%%ANKI
Basic
In terms of sets, what does the Schröder-Bernstein theorem state?
Back: For any sets $A$ and $B$, if $A \preceq B$ and $B \preceq A$, then $A \approx B$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693540-->
END%%
%%ANKI
Basic
In terms of cardinal numbers, what does the Schröder-Bernstein theorem state?
Back: For any cardinal numbers $\kappa$ and $\lambda$, if $\kappa \leq \lambda$ and $\lambda \leq \kappa$, then $\kappa = \lambda$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693542-->
END%%
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be cardinals numbers. What name is given to the following conditional? $$\kappa \leq \lambda \land \lambda \leq \kappa \Rightarrow \kappa = \lambda$$
Back: The Schröder-Bernstein theorem.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693543-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be sets. What name is given to the following conditional? $$A \preceq B \land B \preceq A \Rightarrow A \approx B$$
Back: The Schröder-Bernstein theorem.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693544-->
END%%
%%ANKI
Basic
The following is a visual depiction of what theorem?
![[schroder-bernstein.png]]
Back: The Schröder-Bernstein theorem.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693545-->
END%%
%%ANKI
Basic
Consider injections $f \colon A \rightarrow B$ and $g \colon B \rightarrow A$. What set is "reflected" in the proof of the Schröder-Bernstein theorem?
Back: $A - \mathop{\text{ran}}g$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693546-->
END%%
%%ANKI
Basic
The proof of the Schröder-Bernstein theorem uses concepts from what "paradox"?
Back: Hilbert's paradox of the Grand Hotel.
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693547-->
END%%
%%ANKI
Basic
Consider this visual proof of the Schröder-Bernstein theorem. The first yellow segment corresponds to what set?
![[schroder-bernstein.png]]
Back: $A - \mathop{\text{ran}}g$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693548-->
END%%
%%ANKI
Basic
Consider this visual proof of the Schröder-Bernstein theorem. The second yellow segment corresponds to what set?
![[schroder-bernstein.png]]
Back: $g[\![f[\![A - \mathop{\text{ran}}g]\!]]\!]$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693549-->
END%%
%%ANKI
Cloze
Consider injections $f \colon A \rightarrow B$ and $g \colon B \rightarrow A$. Then $h \colon A \rightarrow B$ is a bijection where:
* {$C_0$} $=$ {$A - \mathop{\text{ran} }g$} and {$C_{n^+}$} $=$ {$g[\![f[\![C_n]\!]]\!]$};
* $h(x) =$ {$f(x)$} if {$x \in \bigcup_{n} C_n$};
* $h(x) =$ {$g^{-1}(x)$} otherwise.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693550-->
END%%
## Hilbert's Hotel
Consider a hypothetical hotel with rooms numbered $1$, $2$, $3$, and so on with no upper limit. That is, there is a countably infinite number of rooms in this hotel. Furthermore, it's assumed every room is occupied.
Hilbert's hotel shows that any finite or countably infinite number of additional guests can still be accommodated for.
%%ANKI
Basic
How many rooms exist in Hilbert's Hotel?
Back: A countably infinite number.
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693551-->
END%%
%%ANKI
Basic
What does Hilbert's Hotel assume about every one of its rooms?
Back: That they are occupied.
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693552-->
END%%
%%ANKI
Basic
How many rooms are there assumed to be in Hilbert's Hotel?
Back: A countably infinite number of them, i.e. $\omega$.
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693553-->
END%%
%%ANKI
Basic
Add one guest to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
Back: $n + 1$
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693554-->
END%%
%%ANKI
Basic
Add $k \in \mathbb{N}$ guests to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
Back: $n + k$
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693555-->
END%%
%%ANKI
Basic
Add a countably infinite number of guests to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
Back: $2n$
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693556-->
END%%
%%ANKI
Basic
Add a countably infinite number of guests to Hilbert's Hotel. Moving occupant of room $n$ to room $2n$ makes which rooms available?
Back: All odd-numbered rooms.
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693557-->
END%%
%%ANKI
Basic
What "paradox" does Hilbert's Hotel raise?
Back: A fully occupied hotel can still make room for more guests.
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693558-->
END%%
%%ANKI
Basic
Hilbert's paradox of the Grand Hotel illustates the existence of what mathematical entity?
Back: A bijection between any countably infinite set and $\mathbb{N}$.
Reference: “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693559-->
END%%
## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
* “Hilberts Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB