Axioms of area.
parent
19959c4866
commit
3b87d57d89
|
@ -930,8 +930,8 @@
|
||||||
"_journal/2024-11/2024-11-08.md": "806bbade5f8339579287687f9433334e",
|
"_journal/2024-11/2024-11-08.md": "806bbade5f8339579287687f9433334e",
|
||||||
"_journal/2024-11/2024-11-07.md": "434ec3f15d7065ea740127aa8477dd17",
|
"_journal/2024-11/2024-11-07.md": "434ec3f15d7065ea740127aa8477dd17",
|
||||||
"x86-64/directives.md": "019c1c1d04efb26c3e8758aac4543cc7",
|
"x86-64/directives.md": "019c1c1d04efb26c3e8758aac4543cc7",
|
||||||
"geometry/cartesian.md": "b7003f70ab4822aa6eb4b84ba35f6e65",
|
"geometry/cartesian.md": "52eed93bf2d456ffab76e73d1031187c",
|
||||||
"geometry/index.md": "679dcd097f4bebe417828c695444c88c",
|
"geometry/index.md": "130185982889f115c9415f14c4424848",
|
||||||
"_journal/2024-11-10.md": "5478337fd2017b99d0b359713a511e66",
|
"_journal/2024-11-10.md": "5478337fd2017b99d0b359713a511e66",
|
||||||
"_journal/2024-11/2024-11-09.md": "46f3a640223ef533f4523837b67b57c3",
|
"_journal/2024-11/2024-11-09.md": "46f3a640223ef533f4523837b67b57c3",
|
||||||
"_journal/2024-11-18.md": "5567592053951cee80450cf582df270a",
|
"_journal/2024-11-18.md": "5567592053951cee80450cf582df270a",
|
||||||
|
@ -950,7 +950,10 @@
|
||||||
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
"_journal/2024-11/2024-11-21.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||||
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
"_journal/2024-11/2024-11-20.md": "951b6034d60a40dbd8201c50abf0dbb9",
|
||||||
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
|
"_journal/2024-11/2024-11-19.md": "d879f57154cb27cb168eb1f1f430e312",
|
||||||
"set/cardinality.md": "499e758bc0929af06736fa2974aade60"
|
"set/cardinality.md": "499e758bc0929af06736fa2974aade60",
|
||||||
|
"geometry/area.md": "3c6e53a64ad3150d8f81f6e4a63da61a",
|
||||||
|
"_journal/2024-11-23.md": "cd8db62b2aa0d67d50c0aa8257956732",
|
||||||
|
"_journal/2024-11/2024-11-22.md": "51117030e2364dbce3a8d507dead86ae"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-11-23"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [ ] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [x] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,341 @@
|
||||||
|
---
|
||||||
|
title: Area
|
||||||
|
TARGET DECK: Obsidian::STEM
|
||||||
|
FILE TAGS: geometry::area
|
||||||
|
tags:
|
||||||
|
- calculus
|
||||||
|
- geometry
|
||||||
|
---
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
**Area** is a **set function** mapping from a class of so-called **measurable** sets $\mathscr{M}$ into the real numbers.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is a set function?
|
||||||
|
Back: A function mapping a collection of sets to real numbers.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333289-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the first set function Apostol introduces?
|
||||||
|
Back: Area.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333310-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of mathematical entity is area?
|
||||||
|
Back: A function.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333313-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the domain of the area function?
|
||||||
|
Back: The class of measurable sets.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333316-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the codomain of the area function?
|
||||||
|
Back: The real numbers.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333319-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the "function signature" of the area function $a$?
|
||||||
|
Back: $a \colon \mathscr{M} \rightarrow \mathbb{R}$ where $\mathscr{M}$ is the class of measurable sets.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333321-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does Apostol mean by a measurable set?
|
||||||
|
Back: A set that can be ascribed an area.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333324-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Axioms
|
||||||
|
|
||||||
|
We assume there exists a class $\mathscr{M}$ of measurable sets in the plane and a set function $a$, whose domain is $\mathscr{M}$, with the following six properties:
|
||||||
|
|
||||||
|
### Nonnegative Property
|
||||||
|
|
||||||
|
For each $S \in \mathscr{M}$, $a(S) \geq 0$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does the nonnegative property of area state?
|
||||||
|
Back: For every set $S \in \mathscr{M}$, $a(S) \geq 0$.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333327-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
State the nonnegative property of area in FOL.
|
||||||
|
Back: $\forall S \in \mathscr{M}, a(S) \geq 0$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333329-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $a$ is an area function and $S \in \mathscr{M}$. Why can't $a(S) = -1$?
|
||||||
|
Back: This violates the nonnegative property of $a$.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333332-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Additive Property
|
||||||
|
|
||||||
|
If $S, T \in \mathscr{M}$, then $S \cup T$ and $S \cap T$ are in $\mathscr{M}$. Also $$a(S \cup T) = a(S) + a(T) - a(S \cap T).$$
|
||||||
|
|
||||||
|
Notice this last formulation is a special case of [[inclusion-exclusion|PIE]].
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $S, T \in \mathscr{M}$. What set(s) does the additive property of area state are also in $\mathscr{M}$?
|
||||||
|
Back: $S \cup T$ and $S \cap T$.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333334-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $a$ is an area function and $S, T \in \mathscr{M}$. Why is $S \cup T \in \mathscr{M}$?
|
||||||
|
Back: The additive property of $a$ states it is.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333337-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $a$ is an area function and $S, T \in \mathscr{M}$. Why is $S \cap T \in \mathscr{M}$?
|
||||||
|
Back: The additive property of $a$ states it is.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333340-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $a$ is an area function and $S, T \in \mathscr{M}$. What does $a(S \cup T)$ evaluate to?
|
||||||
|
Back: $a(S) + a(T) - a(S \cap T)$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333343-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
The additive property of area uses what combinatorial concept?
|
||||||
|
Back: The principle of inclusion/exclusion.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333346-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Difference Property
|
||||||
|
|
||||||
|
If $S, T \in \mathscr{M}$ such that $S \subseteq T$, then $T - S \in \mathscr{M}$ and $$a(T - S) = a(T) - a(S).$$
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $S, T \in \mathscr{M}$. What set(s) does the difference property of area state are also in $\mathscr{M}$?
|
||||||
|
Back: N/A.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333349-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $S, T \in \mathscr{M}$ such that $S \subseteq T$. What set(s) does the difference property of area state are also in $\mathscr{M}$?
|
||||||
|
Back: $T - S$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333353-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $S, T \in \mathscr{M}$ such that $T \subseteq S$. What set(s) does the difference property of area state are also in $\mathscr{M}$?
|
||||||
|
Back: $S - T$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333357-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $a$ is an area function and $S, T \in \mathscr{M}$ s.t. $S \subseteq T$. Why is $T - S \in \mathscr{M}$?
|
||||||
|
Back: The difference property of $a$ states it is.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333361-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $a$ is an area function and $S, T \in \mathscr{M}$ s.t. $S \subseteq T$. What does $a(T - S)$ evaluate to?
|
||||||
|
Back: $a(T) - a(S)$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333365-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Invariance Under Congruence
|
||||||
|
|
||||||
|
If $S \in \mathscr{M}$ and $T$ is congruent to $S$, then $T \in \mathscr{M}$ and $a(S) = a(T)$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does the invariance of congruence property of area state?
|
||||||
|
Back: If $S \in \mathscr{M}$ and $T$ is congruent to $S$, then $T \in \mathscr{M}$ and $a(S) = a(T)$.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333368-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $S \in \mathscr{M}$ and $T$ is congruent to $S$. What set(s) does the invariance of congruence property of area state are also in $\mathscr{M}$?
|
||||||
|
Back: $T$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333372-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $S \in \mathscr{M}$ and $T$ is congruent to $S$. What does $a(T)$ evaluate to?
|
||||||
|
Back: $a(S)$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333376-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Choice of Scale
|
||||||
|
|
||||||
|
Every rectangle $R$ is in $\mathscr{M}$. If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What shape is the choice of scale property of area concerned with?
|
||||||
|
Back: Rectangles.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333380-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What sets does the choice of scale property of area state are also in $\mathscr{M}$?
|
||||||
|
Back: All rectangles.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333384-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $R$ is a rectangle. What property of area claims $R$ is measurable?
|
||||||
|
Back: Choice of scale.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333388-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $R$ is a rectangle. What does $a(R)$ evaluate to?
|
||||||
|
Back: If $R$ has edges of length $h$ and $k$, $a(R) = hk$.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333391-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the area of a line segment?
|
||||||
|
Back: $0$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333395-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
The line segment is considered a special case of what other shape?
|
||||||
|
Back: A rectangle.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333399-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How does a rectangle relate to a line segment?
|
||||||
|
Back: A line segment is a rectangle with one dimension equal to zero.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333403-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the area of a point?
|
||||||
|
Back: $0$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333409-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
The point is considered a special case of what other shape?
|
||||||
|
Back: A rectangle.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333414-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How does a rectangle relate to a point?
|
||||||
|
Back: A point is a rectangle with both dimensions equal to zero.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333419-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
### Exhaustion Property
|
||||||
|
|
||||||
|
Let $Q$ be a set. If there exists exactly one $c$ such that $a(S) \leq c \leq a(T)$ for all step regions $S$ and $T$ satisfying $S \subseteq Q \subseteq T$, then $Q \in \mathscr{M}$ and $a(Q) = c$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Let $Q$ be a set. The {exhaustion} property of area states that if there exists {exactly one} $c$ such that {$a(S) \leq c \leq a(T)$} for all {step regions} $S$ and $T$ satisfying {$S \subseteq Q \subseteq T$}, then {$Q \in \mathscr{M}$} and {$a(Q) = c$}.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333427-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
The exhaustion property of area considers sets bounded by what?
|
||||||
|
Back: Step regions.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333433-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* does the exhaustion property of area require existence of exactly one satisfying real number?
|
||||||
|
Back: Area is a function, i.e. single-valued.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333438-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which axiom of area is typically used to prove ordinate sets are measurable?
|
||||||
|
Back: The exhaustion property.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333444-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Bibliography
|
||||||
|
|
||||||
|
* Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
|
@ -24,6 +24,30 @@ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Int
|
||||||
<!--ID: 1731184865791-->
|
<!--ID: 1731184865791-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is an ordinate set?
|
||||||
|
Back: A set bounded by the $x$-axis and the graph of a nonnegative function.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333459-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
An ordinate set is bounded below by what?
|
||||||
|
Back: The $x$-axis, i.e. $y = 0$.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333464-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
An ordinate set is bounded above by what?
|
||||||
|
Back: The graph of a nonnegative function.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333469-->
|
||||||
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Cloze
|
Cloze
|
||||||
The {origin} of a Cartesian coordinate system has coordinates $\langle 0, 0 \rangle$.
|
The {origin} of a Cartesian coordinate system has coordinates $\langle 0, 0 \rangle$.
|
||||||
|
|
|
@ -1,3 +1,27 @@
|
||||||
---
|
---
|
||||||
title: Geometry
|
title: Geometry
|
||||||
---
|
---
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Two sets are **congruent** if their points can be put in one-to-one correspondence in such a way that distances are preserved.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose sets $P$ and $Q$ are congruent. What does this imply the existence of?
|
||||||
|
Back: A bijection between $P$ and $Q$ that preserves distances between points.
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333449-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose sets $P$ and $Q$ are congruent and $f$ is the corresponding bijection. What FOL proposition follows?
|
||||||
|
Back: $\forall p_1, p_2 \in P, \lvert p_1 - p_2 \rvert = \lvert f(p_1) - f(p_2) \rvert$
|
||||||
|
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||||
|
<!--ID: 1732381333454-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Bibliography
|
||||||
|
|
||||||
|
* Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
Loading…
Reference in New Issue