Notes on transitive sets.

main
Joshua Potter 2024-09-19 20:04:19 -06:00
parent 052b141e62
commit 2bf0ac9adb
4 changed files with 143 additions and 13 deletions

View File

@ -193,7 +193,8 @@
"function-general.png", "function-general.png",
"function-kernel.png", "function-kernel.png",
"peano-system-i.png", "peano-system-i.png",
"peano-system-ii.png" "peano-system-ii.png",
"relation-ordering-example.png"
], ],
"File Hashes": { "File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8", "algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
@ -559,7 +560,7 @@
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
"set/relations.md": "9323fc61ee983487e16f6dd4c1629957", "set/relations.md": "18d3f9a6bec2a23a576910750fd2158d",
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
@ -762,7 +763,7 @@
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df", "_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571", "_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50", "_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
"set/natural-numbers.md": "1135fcfce9759ed4c5689df59b0c9fe3", "set/natural-numbers.md": "353d1eef7b50fa8f635adc928df734fa",
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4", "_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c", "_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe", "_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
@ -810,7 +811,12 @@
"_journal/2024-09/2024-09-12.md": "30968fa3d73c005bdb4acc2025b34e11", "_journal/2024-09/2024-09-12.md": "30968fa3d73c005bdb4acc2025b34e11",
"_journal/2024-09-15.md": "0e5d1ecd73edf343d3a268b25140a921", "_journal/2024-09-15.md": "0e5d1ecd73edf343d3a268b25140a921",
"_journal/2024-09/2024-09-14.md": "1050e9ae0dfe4196a419105c43c2162f", "_journal/2024-09/2024-09-14.md": "1050e9ae0dfe4196a419105c43c2162f",
"_journal/2024-09-16.md": "bd3f811538b8e8b288b3376246471c0a" "_journal/2024-09-16.md": "bd3f811538b8e8b288b3376246471c0a",
"_journal/2024-09/2024-09-18.md": "5cba3e6646783019db268af3b353c5d8",
"_journal/2024-09/2024-09-17.md": "caea0dab26b0970c045ccd9e5f2f3765",
"_journal/2024-09/2024-09-16.md": "7dd800d514051dd36c33c14623c7c5c8",
"_journal/2024-09/2024-09-15.md": "0e5d1ecd73edf343d3a268b25140a921",
"_journal/2024-09-19.md": "612f08e8f9ce35f71378e2c4a636c862"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -6,4 +6,6 @@ title: "2024-09-19"
- [x] KoL - [x] KoL
- [x] OGS - [x] OGS
- [ ] Sheet Music (10 min.) - [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story) - [ ] Korean (Read 1 Story)
* Notes on [[natural-numbers#Transitivity|transitive sets]].

View File

@ -538,6 +538,136 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1726364667688--> <!--ID: 1726364667688-->
END%% END%%
## Transitivity
A set $A$ is said to be **transitive** iff every member of a member of $A$ is itself a member of $A$. We can equivalently express this using any of the following formulations:
* $x \in a \in A \Rightarrow x \in A$
* $\bigcup A \subseteq A$
* $a \in A \Rightarrow a \subseteq A$
* $A \subseteq \mathscr{P}A$
%%ANKI
Basic
What does it mean for $A$ to be a transitive set?
Back: Every member of a member of $A$ is itself a member of $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209150-->
END%%
%%ANKI
Basic
In what way is the term "transitive set" ambiguous?
Back: This term can also be used to describe a transitive relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209152-->
END%%
%%ANKI
Cloze
A transitive {1:set} is to {2:membership} whereas a transitive {2:relation} is to {1:related}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209154-->
END%%
%%ANKI
Cloze
$A$ is a transitive set iff {$x \in a \in A$} $\Rightarrow$ {$x \in A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209155-->
END%%
%%ANKI
Cloze
$A$ is a transitive set iff {$\bigcup A$} $\subseteq$ {$A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209157-->
END%%
%%ANKI
Cloze
$A$ is a transitive set iff {$a \in A$} $\Rightarrow$ {$a \subseteq A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209158-->
END%%
%%ANKI
Cloze
$A$ is a transitive set iff {$A$} $\subseteq$ {$\mathscr{P} A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209159-->
END%%
%%ANKI
Basic
Is $\varnothing$ a transitive set?
Back: Yes.
<!--ID: 1726797209160-->
END%%
%%ANKI
Basic
*Why* isn't $\{0, 1\}$ a transitive set?
Back: N/A. It is.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209161-->
END%%
%%ANKI
Basic
*Why* isn't $\{1\}$ a transitive set?
Back: Because $0 \in 1$ but $0 \not\in \{1\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209163-->
END%%
%%ANKI
Basic
*Why* isn't $\{\varnothing\}$ a transitive set?
Back: N/A. It is.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209164-->
END%%
%%ANKI
Basic
*Why* isn't $\{\{\varnothing\}\}$ a transitive set?
Back: Because $\varnothing \in \{\varnothing\}$ but $\varnothing \not\in \{\{\varnothing\}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209165-->
END%%
%%ANKI
Basic
Suppose $a$ is a transitive set. *Why* does $\bigcup a \cup a = a$?
Back: Because transitivity holds if and only if $\bigcup a \subseteq a$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209166-->
END%%
%%ANKI
Basic
Suppose $A \cup B = A$. What relation immediately follows?
Back: $B \subseteq A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209167-->
END%%
%%ANKI
Basic
Suppose $A \cap B = A$. What relation immediately follows?
Back: $B = A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797814900-->
END%%
%%ANKI
Cloze
$A$ is a transitive set iff {$\bigcup$}$A^+ =$ {$A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726797209168-->
END%%
## Bibliography ## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). * Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).

View File

@ -1105,14 +1105,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1720969371859--> <!--ID: 1720969371859-->
END%% END%%
%%ANKI
Basic
The term "transitive" is used to describe what kind of mathematical object?
Back: Relations.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721694448736-->
END%%
## Connected ## Connected
A binary relation $R$ on set $A$ is said to be **connected** if for any *distinct* $x, y \in A$, either $xRy$ or $yRx$. The relation is **strongly connected** if for *all* $x, y \in A$, either $xRy$ or $yRx$. A binary relation $R$ on set $A$ is said to be **connected** if for any *distinct* $x, y \in A$, either $xRy$ or $yRx$. The relation is **strongly connected** if for *all* $x, y \in A$, either $xRy$ or $yRx$.