Move hexadecimal to radices page.
parent
886fb34762
commit
2678c94882
|
@ -90,7 +90,7 @@
|
||||||
"bash/quoting.md": "b1d8869a91001f8b22f0cdc54d806f61",
|
"bash/quoting.md": "b1d8869a91001f8b22f0cdc54d806f61",
|
||||||
"bash/robustness.md": "7ab094b95ba2bfa885adba8e9efedf68",
|
"bash/robustness.md": "7ab094b95ba2bfa885adba8e9efedf68",
|
||||||
"bash/shebang.md": "9006547710f9a079a3666169fbeda7aa",
|
"bash/shebang.md": "9006547710f9a079a3666169fbeda7aa",
|
||||||
"c/escape-sequences.md": "0d6219ebb51f6f21e026de67603e25b8",
|
"c/escape-sequences.md": "7b4bbf159908320249158acfe47a9074",
|
||||||
"c/index.md": "a021c92f19831bdd2bca4cbf813882fe",
|
"c/index.md": "a021c92f19831bdd2bca4cbf813882fe",
|
||||||
"gawk/index.md": "dd851e023e11c556c0272a0dcb6dd55d",
|
"gawk/index.md": "dd851e023e11c556c0272a0dcb6dd55d",
|
||||||
"gawk/variables.md": "73b12bd0d7d6f97b4a7285aaf2c45bfa",
|
"gawk/variables.md": "73b12bd0d7d6f97b4a7285aaf2c45bfa",
|
||||||
|
@ -107,7 +107,7 @@
|
||||||
"posix/index.md": "97b1b8ecb9a953e855a9acf0ab25b8c8",
|
"posix/index.md": "97b1b8ecb9a953e855a9acf0ab25b8c8",
|
||||||
"posix/signals.md": "4fe63c3c9507b2e15c9ad6f3a2b541db",
|
"posix/signals.md": "4fe63c3c9507b2e15c9ad6f3a2b541db",
|
||||||
"templates/daily.md": "7866014e730e85683155207a02e367d8",
|
"templates/daily.md": "7866014e730e85683155207a02e367d8",
|
||||||
"posix/regexp.md": "43825a1b9ed0dd7eeb1b6fe35c928bfe",
|
"posix/regexp.md": "f5fb177c7356faf1bf768023c2563c54",
|
||||||
"journal/2024-02-04.md": "e2b5678fc53d7284b71ed6820c02b954",
|
"journal/2024-02-04.md": "e2b5678fc53d7284b71ed6820c02b954",
|
||||||
"gawk/regexp.md": "d9229f1eabe1b99e965eecaa03bee86c",
|
"gawk/regexp.md": "d9229f1eabe1b99e965eecaa03bee86c",
|
||||||
"_templates/daily.md": "7866014e730e85683155207a02e367d8",
|
"_templates/daily.md": "7866014e730e85683155207a02e367d8",
|
||||||
|
@ -128,7 +128,7 @@
|
||||||
"algorithms/sorting/selection-sort.md": "fcd0dc2ebaabd0a4db1baf7e7ef9f7a9",
|
"algorithms/sorting/selection-sort.md": "fcd0dc2ebaabd0a4db1baf7e7ef9f7a9",
|
||||||
"algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97",
|
"algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97",
|
||||||
"binary/hexadecimal.md": "c3d485f1fd869fe600334ecbef7d5d70",
|
"binary/hexadecimal.md": "c3d485f1fd869fe600334ecbef7d5d70",
|
||||||
"binary/index.md": "ab345e75dc01f890faa31bc26676d526",
|
"binary/index.md": "d97bddf94227df5903a2929febf25606",
|
||||||
"_journal/2024-02-09.md": "a798d35f0b2bd1da130f7ac766166109",
|
"_journal/2024-02-09.md": "a798d35f0b2bd1da130f7ac766166109",
|
||||||
"c/types.md": "cf3e66e5aee58a94db3fdf0783908555",
|
"c/types.md": "cf3e66e5aee58a94db3fdf0783908555",
|
||||||
"logic/quantification.md": "5d7579a511e9ff683edeec62bcc291b8",
|
"logic/quantification.md": "5d7579a511e9ff683edeec62bcc291b8",
|
||||||
|
@ -166,7 +166,7 @@
|
||||||
"_journal/2024-02/2024-02-14.md": "aa009f9569e175a8104b0537ebcc5520",
|
"_journal/2024-02/2024-02-14.md": "aa009f9569e175a8104b0537ebcc5520",
|
||||||
"_journal/2024-02-16.md": "5cc129254afd553829be3364facd23db",
|
"_journal/2024-02-16.md": "5cc129254afd553829be3364facd23db",
|
||||||
"_journal/2024-02/2024-02-15.md": "16cb7563d404cb543719b7bb5037aeed",
|
"_journal/2024-02/2024-02-15.md": "16cb7563d404cb543719b7bb5037aeed",
|
||||||
"algebra/floor-ceiling.md": "456fa31bedb9ec7c2fa1d6f75db81dec",
|
"algebra/floor-ceiling.md": "efc4502ed22128e14b20ba88b368a872",
|
||||||
"algebra/index.md": "90b842eb694938d87c7c68779a5cacd1",
|
"algebra/index.md": "90b842eb694938d87c7c68779a5cacd1",
|
||||||
"algorithms/binary-search.md": "08cb6dc2dfb204a665d8e8333def20ca",
|
"algorithms/binary-search.md": "08cb6dc2dfb204a665d8e8333def20ca",
|
||||||
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||||
|
@ -179,11 +179,14 @@
|
||||||
"combinatorics/additive-principle.md": "84dcd0243263b3c53456086ae43fa00f",
|
"combinatorics/additive-principle.md": "84dcd0243263b3c53456086ae43fa00f",
|
||||||
"_journal/2024-02-19.md": "30d16c5373deb9cb128d2e7934ae256a",
|
"_journal/2024-02-19.md": "30d16c5373deb9cb128d2e7934ae256a",
|
||||||
"_journal/2024-02/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
"_journal/2024-02/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
||||||
"combinatorics/permutations.md": "9351e4d5c4457c34198640cf04bdd888",
|
"combinatorics/permutations.md": "606b4b2b8018797ca54857112235d96e",
|
||||||
"combinatorics/combinations.md": "2e7069e018525e10e4e2b9fb46bc8291",
|
"combinatorics/combinations.md": "6fc179a9bf4e3958f28c4c3f7da5cda0",
|
||||||
"_journal/2024-02-20.md": "b85ba0eeeb16e30a602ccefabcc9763e",
|
"_journal/2024-02-20.md": "b85ba0eeeb16e30a602ccefabcc9763e",
|
||||||
"_journal/2024-02/2024-02-19.md": "df1a9ab7ab89244021b3003c84640c78",
|
"_journal/2024-02/2024-02-19.md": "df1a9ab7ab89244021b3003c84640c78",
|
||||||
"combinatorics/inclusion-exclusion.md": "4d5ba716bc90cd378c7c4c816b224c75"
|
"combinatorics/inclusion-exclusion.md": "4d5ba716bc90cd378c7c4c816b224c75",
|
||||||
|
"_journal/2024-02-21.md": "d7545ab01e651e565c056ded99455286",
|
||||||
|
"_journal/2024-02/2024-02-20.md": "af2ef10727726200c4defe2eafc7d841",
|
||||||
|
"algebra/radices.md": "1171835a864103fbc4cbe21d56fcfa1f"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,11 @@
|
||||||
|
---
|
||||||
|
title: "2024-02-21"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] OGS (1 Life & Death Problem)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
||||||
|
- [ ] Interview Prep (1 Practice Problem)
|
||||||
|
- [ ] Log Work Hours (Max 3 hours)
|
|
@ -21,7 +21,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What is the floor of $x$?
|
What is the floor of $x$?
|
||||||
Back: The greatest integer less than $x$.
|
Back: The greatest integer less than or equal to $x$.
|
||||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||||
<!--ID: 1708110779649-->
|
<!--ID: 1708110779649-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -37,7 +37,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What is the ceiling of $x$?
|
What is the ceiling of $x$?
|
||||||
Back: The least integer greater than $x$.
|
Back: The least integer greater than or equal to $x$.
|
||||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||||
<!--ID: 1708110779663-->
|
<!--ID: 1708110779663-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -68,7 +68,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What can be said about $x$ if $\lceil x \rceil - \lfloor x \rceil = 0$?
|
What can be said about $x$ if $\lceil x \rceil - \lfloor x \rfloor = 0$?
|
||||||
Back: $x$ is even.
|
Back: $x$ is even.
|
||||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||||
<!--ID: 1708110779687-->
|
<!--ID: 1708110779687-->
|
||||||
|
@ -76,7 +76,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What can be said about $x$ if $\lceil x \rceil - \lfloor x \rceil = 1$?
|
What can be said about $x$ if $\lceil x \rceil - \lfloor x \rfloor = 1$?
|
||||||
Back: $x$ is odd.
|
Back: $x$ is odd.
|
||||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||||
<!--ID: 1708110779693-->
|
<!--ID: 1708110779693-->
|
||||||
|
@ -195,7 +195,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
If `A[p..q]` has odd size, what `r` most fairly allows partitions `A[p..r]` and `A[r+1..q]`?
|
If `A[p..q]` has odd size, what `r` most fairly allows partitions `A[p..r]` and `A[r+1..q]`?
|
||||||
Back: $r = \lfloor (p + q) / 2 \rfloor$
|
Back: $r = \lfloor (p + q) / 2 \rfloor = \lceil (p + q) / 2 \rceil$
|
||||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||||
<!--ID: 1708114757958-->
|
<!--ID: 1708114757958-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -203,7 +203,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
If `A[p..q]` has odd size, what `r` most fairly allows partitions `A[p..r-1]` and `A[r..q]`?
|
If `A[p..q]` has odd size, what `r` most fairly allows partitions `A[p..r-1]` and `A[r..q]`?
|
||||||
Back: $r = \lceil (p + q) / 2 \rceil$
|
Back: $r = \lfloor (p + q) / 2 \rfloor = \lceil (p + q) / 2 \rceil$
|
||||||
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
|
||||||
<!--ID: 1708114757961-->
|
<!--ID: 1708114757961-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -1,26 +1,108 @@
|
||||||
---
|
---
|
||||||
title: Hexadecimal
|
title: Radices
|
||||||
TARGET DECK: Obsidian::STEM
|
TARGET DECK: Obsidian::STEM
|
||||||
FILE TAGS: binary::hex
|
FILE TAGS: algebra
|
||||||
tags:
|
tags:
|
||||||
- binary
|
- algebra
|
||||||
- hexadecimal
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## Overview
|
## Overview
|
||||||
|
|
||||||
Hexadecimal encoding refers to the 16-base representation of binary numbers. Distinguish potentially ambiguous values like $32$ with the base as a subscript, e.g. $32_{10}$ vs $32_{16}$.
|
The **radix** is the number of unique digits used to represent numbers in a positional numeral system. Most commonly used systems tend to be binary ($2$-base), octal ($8$-base), decimal ($10$-base), and [[#Hexadecimal|hexadecimal]] ($16$-base).
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the process of subtracting a larger digit from a smaller one in radix $r$?
|
||||||
|
Back: Decrement the next non-zero and add $r$ to the smaller digit in question.
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
<!--ID: 1708534662981-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What does the first step in the subtraction process of $100_2 - 10_2$ *look* like?
|
||||||
|
Back: $020_2 - 10_2$
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
<!--ID: 1708534662989-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
In a positional numeral system, what does "radix" refer to?
|
||||||
|
Back: The number of unique digits used to represent numbers.
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
<!--ID: 1708534662993-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the radix of the decimal system?
|
||||||
|
Back: $10$
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
<!--ID: 1708534662997-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the radix of the octal system?
|
||||||
|
Back: $8$
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
Tags: binary
|
||||||
|
<!--ID: 1708534663001-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the radix of the hexadecimal system?
|
||||||
|
Back: $16$
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
Tags: binary::hex
|
||||||
|
<!--ID: 1708534663005-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the radix of the binary system?
|
||||||
|
Back: $2$
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
Tags: binary
|
||||||
|
<!--ID: 1708534663009-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
## Hexadecimal
|
||||||
|
|
||||||
|
Hexadecimal is a 16-base numeral system, usually represented with digits `0` to `9` and `a` to `f` or `A` to `F`.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
A hexadecimal digit represents {4} bits.
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
Tags: binary::hex
|
||||||
|
<!--ID: 1708534663013-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
An octal digit represents {3} bits.
|
||||||
|
Reference: “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
||||||
|
Tags: binary
|
||||||
|
<!--ID: 1708534663018-->
|
||||||
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Cloze
|
Cloze
|
||||||
A byte consists of {2} hexadecimal digits.
|
A byte consists of {2} hexadecimal digits.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641563-->
|
<!--ID: 1707432641563-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
|
Cloze
|
||||||
A nibble consists of {1} hexadecimal digits.
|
A nibble consists of {1} hexadecimal digits.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
|
<!--ID: 1708534663022-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
|
@ -28,6 +110,7 @@ Basic
|
||||||
Hexadecimal digits are represented by what characters?
|
Hexadecimal digits are represented by what characters?
|
||||||
Back: `a` to `f`, `A` to `F`, and `0` to `9`.
|
Back: `a` to `f`, `A` to `F`, and `0` to `9`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641565-->
|
<!--ID: 1707432641565-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -36,6 +119,7 @@ Basic
|
||||||
How does C denote a hexadecimal numeric constant?
|
How does C denote a hexadecimal numeric constant?
|
||||||
Back: With `0x` or `0X`.
|
Back: With `0x` or `0X`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex c
|
||||||
<!--ID: 1707432641567-->
|
<!--ID: 1707432641567-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -44,6 +128,7 @@ Basic
|
||||||
What is the decimal equivalent of hex `A`, `C`, and `F`?
|
What is the decimal equivalent of hex `A`, `C`, and `F`?
|
||||||
Back: `10`, `12`, and `15` respectively.
|
Back: `10`, `12`, and `15` respectively.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641568-->
|
<!--ID: 1707432641568-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -52,6 +137,7 @@ Basic
|
||||||
What is the hexadecimal equivalent of decimal `11`, `12`, and `14`?
|
What is the hexadecimal equivalent of decimal `11`, `12`, and `14`?
|
||||||
Back: `B`, `C`, and `E` respectively.
|
Back: `B`, `C`, and `E` respectively.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641570-->
|
<!--ID: 1707432641570-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -60,6 +146,7 @@ Basic
|
||||||
*When* should padding be introduced in binary to hexadecimal conversion?
|
*When* should padding be introduced in binary to hexadecimal conversion?
|
||||||
Back: When the number of bits is not a multiple of `4`.
|
Back: When the number of bits is not a multiple of `4`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641571-->
|
<!--ID: 1707432641571-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -68,6 +155,7 @@ Basic
|
||||||
*Where* is padding introduced in binary to hexadecimal conversion?
|
*Where* is padding introduced in binary to hexadecimal conversion?
|
||||||
Back: To the left of the binary sequence.
|
Back: To the left of the binary sequence.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641573-->
|
<!--ID: 1707432641573-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -76,6 +164,7 @@ Basic
|
||||||
What are the possible hex values the first digit of $2^n$ can take on?
|
What are the possible hex values the first digit of $2^n$ can take on?
|
||||||
Back: `1`, `2`, `4`, and `8`.
|
Back: `1`, `2`, `4`, and `8`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641579-->
|
<!--ID: 1707432641579-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -84,6 +173,7 @@ Basic
|
||||||
What are the possible values in binary that the first nibble of $2^n$ can take on?
|
What are the possible values in binary that the first nibble of $2^n$ can take on?
|
||||||
Back: `0001`, `0010`, `0100`, and `1000`.
|
Back: `0001`, `0010`, `0100`, and `1000`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641580-->
|
<!--ID: 1707432641580-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -92,6 +182,7 @@ Basic
|
||||||
How is $j$ interpreted in the hex representation of $2^{i + 4j}$?
|
How is $j$ interpreted in the hex representation of $2^{i + 4j}$?
|
||||||
Back: As the number of `0`s in the encoding.
|
Back: As the number of `0`s in the encoding.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641582-->
|
<!--ID: 1707432641582-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -100,6 +191,7 @@ Basic
|
||||||
How is the $0$ in $2^{0 + 4j}$ translated to hex?
|
How is the $0$ in $2^{0 + 4j}$ translated to hex?
|
||||||
Back: As hex digit `1`.
|
Back: As hex digit `1`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641583-->
|
<!--ID: 1707432641583-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -108,6 +200,7 @@ Basic
|
||||||
How is the $1$ in $2^{1 + 4j}$ translated to hex?
|
How is the $1$ in $2^{1 + 4j}$ translated to hex?
|
||||||
Back: As hex digit `2`.
|
Back: As hex digit `2`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641585-->
|
<!--ID: 1707432641585-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -116,6 +209,7 @@ Basic
|
||||||
How is the $2$ (power) in $2^{2 + 4j}$ translated to hex?
|
How is the $2$ (power) in $2^{2 + 4j}$ translated to hex?
|
||||||
Back: As hex digit `4`.
|
Back: As hex digit `4`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641586-->
|
<!--ID: 1707432641586-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -124,6 +218,7 @@ Basic
|
||||||
How is the $3$ in $2^{3 + 4j}$ translated to hex?
|
How is the $3$ in $2^{3 + 4j}$ translated to hex?
|
||||||
Back: As hex digit `8`.
|
Back: As hex digit `8`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641587-->
|
<!--ID: 1707432641587-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -132,6 +227,7 @@ Basic
|
||||||
How is $n$ in $2^n$ factored to quickly write the decimal value's hex representation?
|
How is $n$ in $2^n$ factored to quickly write the decimal value's hex representation?
|
||||||
Back: $n = i + 4j$ where $0 \leq i \leq 3$.
|
Back: $n = i + 4j$ where $0 \leq i \leq 3$.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641589-->
|
<!--ID: 1707432641589-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -140,6 +236,7 @@ Basic
|
||||||
How is the *remainder* of e.g. `158 / 16` managed in decimal to hex conversion?
|
How is the *remainder* of e.g. `158 / 16` managed in decimal to hex conversion?
|
||||||
Back: As the next least significant bit of our conversion.
|
Back: As the next least significant bit of our conversion.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641594-->
|
<!--ID: 1707432641594-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -148,6 +245,7 @@ Basic
|
||||||
How is the *quotient* of e.g. `158 / 16` managed in decimal to hex conversion?
|
How is the *quotient* of e.g. `158 / 16` managed in decimal to hex conversion?
|
||||||
Back: As the next value to divide by `16`.
|
Back: As the next value to divide by `16`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641595-->
|
<!--ID: 1707432641595-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -156,6 +254,7 @@ Basic
|
||||||
When does repeated division in decimal to hex conversion end?
|
When does repeated division in decimal to hex conversion end?
|
||||||
Back: When the quotient (*not* the remainder) is `0`.
|
Back: When the quotient (*not* the remainder) is `0`.
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707919792632-->
|
<!--ID: 1707919792632-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
@ -164,9 +263,11 @@ Basic
|
||||||
How is e.g. `0xAC32` expressed as a sum of decimal values?
|
How is e.g. `0xAC32` expressed as a sum of decimal values?
|
||||||
Back: $(16^3 \times 10) + (16^2 \times 12) + (16^1 \times 3) + (16^0 \times 2)$
|
Back: $(16^3 \times 10) + (16^2 \times 12) + (16^1 \times 3) + (16^0 \times 2)$
|
||||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
Tags: binary::hex
|
||||||
<!--ID: 1707432641596-->
|
<!--ID: 1707432641596-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
## References
|
## References
|
||||||
|
|
||||||
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||||
|
* “Radix,” in *Wikipedia*, August 6, 2023, [https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173](https://en.wikipedia.org/w/index.php?title=Radix&oldid=1169046173).
|
|
@ -8,7 +8,7 @@ tags:
|
||||||
|
|
||||||
## Overview
|
## Overview
|
||||||
|
|
||||||
A binary digit or **bit** is a `0` or `1` character. A **bit string** is then a contiguous sequence of bits. It's **weight** is a reference to the number of `1`s in the bit string. Compare the below operation to the method for converting from one numerical base to another (e.g. [[hexadecimal]]).
|
A binary digit or **bit** is a `0` or `1` character. A **bit string** is then a contiguous sequence of bits. It's **weight** is a reference to the number of `1`s in the bit string. Compare the below operation to the method for converting from one numerical base to another (e.g. [[radices#Hexadecimal|hexadecimal]]).
|
||||||
|
|
||||||
```c
|
```c
|
||||||
unsigned int bit_weight(int64_t n) {
|
unsigned int bit_weight(int64_t n) {
|
||||||
|
|
|
@ -49,7 +49,7 @@ Tags: bash
|
||||||
<!--ID: 1706975891817-->
|
<!--ID: 1706975891817-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
* `\xhh`: Consists of one or more hexadecimal digits. The `x` prefix is required to distinguish from octal escape sequences.
|
* `\xhh`: Consists of one or more [[radices#Hexadecimal|hexadecimal]] digits. The `x` prefix is required to distinguish from octal escape sequences.
|
||||||
* [[bash/index|Bash]] supports this sequence as `$'\xhh'`. One or two digits is supported.
|
* [[bash/index|Bash]] supports this sequence as `$'\xhh'`. One or two digits is supported.
|
||||||
* [[gawk/index|gawk]] limits processing to two digits.
|
* [[gawk/index|gawk]] limits processing to two digits.
|
||||||
* Robbins states that using more than two hexadecimal digits can produce undefined results.
|
* Robbins states that using more than two hexadecimal digits can produce undefined results.
|
||||||
|
|
|
@ -90,12 +90,20 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How is the closed formula of $\binom{n}{k}$ written in terms of factorials (*not* falling factorials)?
|
Without using falling factorials, what is the closed formula of $\binom{n}{k}$?
|
||||||
Back: $$\binom{n}{k} = \frac{n!}{k!(n - k)!}$$
|
Back: $$\binom{n}{k} = \frac{n!}{k!(n - k)!}$$
|
||||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
<!--ID: 1708368078700-->
|
<!--ID: 1708368078700-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Using falling factorials, what is the closed formula of $\binom{n}{k}$?
|
||||||
|
Back: $$\binom{n}{k} = \frac{(n)_k}{k!}$$
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069694-->
|
||||||
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How do $k$-permutations of $n$ objects relate to $k$-combinations?
|
How do $k$-permutations of $n$ objects relate to $k$-combinations?
|
||||||
|
@ -354,6 +362,68 @@ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n
|
||||||
<!--ID: 1708434662166-->
|
<!--ID: 1708434662166-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
### Stars and Bars
|
||||||
|
|
||||||
|
The **stars and bars** chart refers to a graphical depiction of distributing $n$ objects (represented as $*$) into $m$ different buckets (delineated via $|$. An example chart looks like so: $$**|***|*||*$$
|
||||||
|
|
||||||
|
Notice there are $m - 1$ bars and interspersed amongst the $n$ stars. In the above example, there are $11$ total symbols, $4$ of which are bars, meaning there are $\binom{11}{4}$ ways to distribute the objects amongst the $5$ buckets. We can represent this using bit strings instead, with `0`s as stars and `1`s as bars. The above example is equivalently written as: $$00100010110$$
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What symbols are typically used in a stars and bars chart?
|
||||||
|
Back: $*$ and $|$
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069700-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What property is exhibited by objects distributed in a stars and bars chart?
|
||||||
|
Back: They are identical to one another.
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069704-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What kind of chart is the following an example of? $$**|***|*||*$$
|
||||||
|
Back: Stars and bars
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069707-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How is the following stars and bars chart written as a bit string? $$**|***|*||*$$
|
||||||
|
Back: $00100010110$
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069711-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
The following stars and bars chart is a single instance of how many possible choices? $$**|***|*||*$$
|
||||||
|
Back: $\binom{11}{4}$
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069714-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What graphical depiction is used to find the number of integer solutions to the following equation? $$x_1 + x_2 + \cdots + x_k = n$$
|
||||||
|
Back: Stars and bars
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069717-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What *is* the distribution corresponding to the following stars and bars chart? $$*||*$$
|
||||||
|
Back: A single object in the first and last bucket. No object in the middle.
|
||||||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
|
<!--ID: 1708532069719-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Lattice Paths
|
## Lattice Paths
|
||||||
|
|
||||||
A **lattice path** is one of the shorted possible paths connecting two points on a lattice, moving only horizontally and vertically. By representing each horizontal move by `1` and each vertical move by `1`, we see every lattice path has a corresponding [[#Bit Strings|bit string]].
|
A **lattice path** is one of the shorted possible paths connecting two points on a lattice, moving only horizontally and vertically. By representing each horizontal move by `1` and each vertical move by `1`, we see every lattice path has a corresponding [[#Bit Strings|bit string]].
|
||||||
|
|
|
@ -188,7 +188,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What is the closed formula for $(n)_k$ (falling factorial)?
|
What is the closed formula for falling factorial $(n)_k$?
|
||||||
Back: $$(n)_k = \frac{n!}{(n - k)!}$$
|
Back: $$(n)_k = \frac{n!}{(n - k)!}$$
|
||||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||||
<!--ID: 1708366788619-->
|
<!--ID: 1708366788619-->
|
||||||
|
|
|
@ -294,7 +294,7 @@ Class | Similar To | Meaning
|
||||||
`[:punct:]` | | All graphic characters except letters and digits
|
`[:punct:]` | | All graphic characters except letters and digits
|
||||||
`[:space:]` | `[ \t\n\r\f\v]` | Whitespace characters
|
`[:space:]` | `[ \t\n\r\f\v]` | Whitespace characters
|
||||||
`[:upper:]` | `[A-Z]` | Uppercase alphabetic characters
|
`[:upper:]` | `[A-Z]` | Uppercase alphabetic characters
|
||||||
`[:xdigit:]` | `[0-9A-Fa-f]` | Hexadecimal digits
|
`[:xdigit:]` | `[0-9A-Fa-f]` | [[radices#Hexadecimal\|Hexadecimal]] digits
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
|
|
Loading…
Reference in New Issue